cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376887 The number of divisors of n that are products of factors of the form p^(k!) with multiplicities not larger than their multiplicity in n, where p is a prime and k >= 1, when the factorization of n is uniquely done using the factorial-base representation of the exponents in the prime factorization of n.

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 4, 3, 2, 4, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 2, 8, 2, 6, 4, 4, 4, 4, 2, 4, 4, 8, 2, 8, 2, 4, 4, 4, 2, 6, 2, 4, 4, 4, 2, 8, 4, 8, 4, 4, 2, 8, 2, 4, 4, 2, 4, 8, 2, 4, 4, 8, 2, 8, 2, 4, 4, 4, 4, 8, 2, 6, 3, 4, 2, 8, 4, 4, 4
Offset: 1

Views

Author

Amiram Eldar, Oct 08 2024

Keywords

Comments

See A376885 for details about this factorization.
If n = Product p_i^e_i is the canonical prime factorization of n, then the divisors that are counted by this function are d = Product p_i^s_i, where all the digits of s_i in factorial base are not larger than the corresponding digits of e_i.
The sum of these divisors is given by A376888(n).

Examples

			For n = 12 = 2^2 * 3^1, the representation of 2 in factorial base is 10, i.e., 2 = 2!, so 12 = (2^(2!))^1 * (3^(1!))^1 and a(12) = (1+1) * (1+1) = 4, corresponding to the 4 divisors 1, 3, 4 and 12.
		

Crossrefs

Programs

  • Mathematica
    fdigprod[n_] := Module[{k = n, m = 2, r, s = 1}, While[{k, r} = QuotientRemainder[k, m]; k != 0 || r != 0, s *= (r+1); m++]; s]; f[p_, e_] := fdigprod[e]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    fdigprod(n) = {my(k = n, m = 2, r, s = 1); while([k, r] = divrem(k, m); k != 0 || r != 0, s *= (r+1); m++); s;}
    a(n) = {my(e = factor(n)[, 2]); prod(i = 1, #e, fdigprod(e[i]));}

Formula

Multiplicative with a(p^e) = A227154(e).