This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A376900 #34 Nov 03 2024 19:30:55 %S A376900 0,0,0,0,1,1,1,1,2,2,2,3,4,4,5,5,6,6,6,6,8,10,10,10,11,11,11,11,13,13, %T A376900 14,14,17,17,17,18,18,18,18,19,20,21,23,25,25,25,25,27,27,27,27,29,31, %U A376900 31,31,34,34,34,34,37,37,37,37,40,41,42,43,43,45,45,46 %N A376900 a(n) is the number of distinct integer-sided right triangles that can be drawn into a square with side length n. %H A376900 Felix Huber, <a href="/A376900/b376900.txt">Table of n, a(n) for n = 0..10000</a> %H A376900 Felix Huber, <a href="/A376900/a376900.txt">Maple program to calculate the right triangles for a given n</a> %e A376900 a(11) = 3 because exactly the 3 integer-sided right triangles (3, 4, 5), (6, 8, 10), (5, 12, 13) can be drawn into a square with side length 11. %e A376900 See linked Maple program to calculate the right triangles for a given n. %p A376900 A376900:=proc(n) %p A376900 local a,p,q,v,k; %p A376900 a:=0; %p A376900 for p from 2 to evalf(sqrt(sqrt(2)*n+1)) do %p A376900 for q from 1 to min(p-1,floor(n/(sqrt(2)*p))) do %p A376900 if gcd(p,q)=1 and is(p+q,odd) then %p A376900 v:=max(p^2-q^2,2*p*q); %p A376900 k:=min(p^2-q^2,2*p*q)/v; %p A376900 a:=a+floor(n/v*sqrt(k^2-2*k+2)); %p A376900 fi; %p A376900 od; %p A376900 od; %p A376900 return a; %p A376900 end proc; %p A376900 seq(A376900(n),n=0..70); %Y A376900 Cf. A009012. %K A376900 nonn %O A376900 0,9 %A A376900 _Felix Huber_, Oct 25 2024