This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A376911 #10 Oct 12 2024 15:37:15 %S A376911 2,9,2,4,3,2,7,2,2,9,9,5,2,4,0,2,5,5,3,7,2,8,7,3,8,0,7,4,0,3,7,3,7,8, %T A376911 1,1,4,1,6,7,0,2,2,0,4,6,5,8,9,8,6,3,8,8,9,3,0,7,6,5,9,0,7,4,4,3,5,5, %U A376911 6,8,8,3,6,2,7,2,3,5,7,1,0,9,0,3,7,5,6,2,4,8 %N A376911 Decimal expansion of Product_{k=1..5} Gamma(k/3). %H A376911 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GammaFunction.html">Gamma Function</a>. %H A376911 <a href="/index/Ga#gamma_function">Index to sequences related to the Gamma function</a>. %F A376911 Equals Product_{k=1..6} Gamma(k/3) = (8/27)*Pi^2 = (8/27)*A002388 (cf. eqs. 87 and 88 in Weisstein link). %F A376911 Equals 2*A214549. - _Hugo Pfoertner_, Oct 11 2024 %e A376911 2.9243272299524025537287380740373781141670220... %t A376911 First[RealDigits[8/27*Pi^2, 10, 100]] %Y A376911 Cf. A002388, A214549. %Y A376911 Other identities for Product_{k=1..m} Gamma(k/3): A073005 (m = 1), A186706 (m = 2 and m = 3), A376859 (m = 4), A376912 (m = 7), A376913 (m = 8). %K A376911 nonn,cons %O A376911 1,1 %A A376911 _Paolo Xausa_, Oct 11 2024