A376916 Primes that are the sum of some number of consecutive prime squares.
13, 83, 373, 653, 1543, 2393, 3271, 4519, 4723, 5381, 6701, 7591, 8069, 8219, 9439, 10453, 11719, 19541, 20269, 20477, 23599, 24821, 24953, 32939, 35323, 38219, 39631, 41539, 45319, 51031, 53549, 55721, 56179, 56383, 56599, 56909, 65419, 69389, 73331, 74441, 75997, 81299, 87589, 89459, 90199, 93581, 96661, 97847, 98017, 107741, 108827, 109849
Offset: 1
Keywords
Examples
a(3) = 373 is a term because 373 is prime and 373 = 3^2 + 5^2 + 7^2 + 11^2 + 13^2 where 3, 5, 6, 11 and 13 are consecutive primes.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A340771.
Programs
-
Maple
N:= 2*10^5: # for terms <= N PS:= [0, seq(ithprime(i)^2, i=1..numtheory:-pi(floor(sqrt(N))))]: SPS:= ListTools:-PartialSums(PS): sort(convert(select(t -> t <= N and isprime(t), {seq(seq(SPS[t]-SPS[s], s=1..t-2), t=2..nops(SPS))}), list);
Comments