This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A376921 #11 Oct 10 2024 17:50:26 %S A376921 1,2,4,3,8,5,6,4,16,8,9,6,12,7,8,5,32,13,15,9,18,11,11,7,24,11,12,8, %T A376921 16,9,10,6,64,21,25,13,27,16,17,10,36,17,16,11,21,12,13,8,48,18,21,12, %U A376921 24,15,14,9,32,14,15,10,20,11,12,7 %N A376921 Number T(n,k) of binary words of length n avoiding distance (i+1) between "1" digits if the i-th bit is set in the binary representation of k; triangle T(n,k), n>=0, 0<=k<=ceiling(2^(n-1))-1, read by rows. %C A376921 For more information see A376033. %H A376921 Alois P. Heinz, <a href="/A376921/b376921.txt">Rows n = 0..16, flattened</a> %e A376921 Triangle T(n,k) begins: %e A376921 1; %e A376921 2; %e A376921 4, 3; %e A376921 8, 5, 6, 4; %e A376921 16, 8, 9, 6, 12, 7, 8, 5; %e A376921 32, 13, 15, 9, 18, 11, 11, 7, 24, 11, 12, 8, 16, 9, 10, 6; %e A376921 ... %p A376921 h:= proc(n) option remember; `if`(n=0, 1, 2^(1+ilog2(n))) end: %p A376921 b:= proc(n, k, t) option remember; `if`(n=0, 1, add(`if`(j=1 and %p A376921 Bits[And](t, k)>0, 0, b(n-1, k, irem(2*t+j, h(k)))), j=0..1)) %p A376921 end: %p A376921 T:= (n, k)-> b(n, k, 0): %p A376921 seq(seq(T(n, k), k=0..ceil(2^(n-1))-1), n=0..7); %Y A376921 Cf. A376033. %K A376921 nonn,tabf %O A376921 0,2 %A A376921 _Alois P. Heinz_, Oct 10 2024