This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A376926 #74 Nov 13 2024 16:32:28 %S A376926 0,1,1,1,1,1,0,1,2,2,0,1,0,1,2,1,0,0,0,0,3,1,0,0,4,0,2,1,0,0,0,1,1,0, %T A376926 4,1,0,0,0,1,0,0,0,1,0,0,0,0,3,0,0,0,0,1,4,1,0,0,0,1,0,0,1,1,1,0,0,0, %U A376926 0,0,0,0,0,0,0,0,5,0,0,1,3,0,0,0,0,0,0,1,0,1 %N A376926 a(n) is the number of ways n can be written as x + y with x >= y, x and y coprime, and so that the distinct prime factors of x*y*n are consecutive primes starting with 2. %H A376926 Robert Israel, <a href="/A376926/b376926.txt">Table of n, a(n) for n = 1..10000</a> %e A376926 The a(25) = 4 solutions are: %e A376926 24 + 1 = 25 and 24 * 1 * 25 = 2^3 * 3 * 5^2; %e A376926 21 + 4 = 25 and 21 * 4 * 25 = 2^2 * 3 * 5^2 * 7; %e A376926 18 + 7 = 25 and 18 * 7 * 25 = 2 * 3^2 * 5^2 * 7; %e A376926 16 + 9 = 25 and 16 * 9 * 25 = 2^4 * 3^2 * 5^2. %e A376926 The a(27) = 2 solutions are: %e A376926 25 + 2 = 27 and 25 * 2 * 27 = 2 * 3^3 * 5^2; %e A376926 20 + 7 = 27 and 20 * 7 * 27 = 2^2 * 3^3 * 5 * 7. %p A376926 f:= proc(n) local t,x,y,Pn,Px,Py,L; %p A376926 t:= 0: %p A376926 Pn:= numtheory:-factorset(n); %p A376926 for y from 1 to n/2 do %p A376926 x:= n-y; %p A376926 if igcd(x,y) > 1 then next fi; %p A376926 L:= Pn union numtheory:-factorset(x) union numtheory:-factorset(y); %p A376926 if max(L) = ithprime(nops(L)) then t:= t+1 fi %p A376926 od; %p A376926 t %p A376926 end proc: %p A376926 map(f, [$0..100]); # _Robert Israel_, Nov 12 2024 %o A376926 (PARI) a(n)={sum(k=1, n\2, if(gcd(k,n-k)==1, my(f=factor(k*(n-k)*n)[,1]~); f[#f]==prime(#f)))} \\ _Andrew Howroyd_, Oct 12 2024 %Y A376926 Cf. A055932, A346970. %K A376926 nonn %O A376926 1,9 %A A376926 _Zhicheng Wei_, Oct 10 2024