A376934 Lexicographically earliest sequence of positive integers a(1), a(2), a(3), ... such that for any n > 0, Sum_{k = 1..n} 1/(k*a(k)) < Pi.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 6, 80, 21896, 604163887, 677040508659246685, 447405708743254015046365510044832005, 309471557529368331206803181535934923519436869019793750609292014082198479
Offset: 1
Keywords
Examples
a(17) = 604163887 as Sum_{k = 1..17} 1/(k*a(k)) = 1/(1*1) + 1/(2*1) + ... + 1/(16*21896) + 1/(17*604163887) = 3056398076673607759/972881723918332800, which is ~8.2*10^-20 less than Pi.
Links
- Scott R. Shannon, Table of n, a(n) for n = 1..27