A376936 Powerful numbers divisible by cubes of 2 distinct primes.
216, 432, 648, 864, 1000, 1296, 1728, 1944, 2000, 2592, 2744, 3375, 3456, 3888, 4000, 5000, 5184, 5400, 5488, 5832, 6912, 7776, 8000, 9000, 9261, 10000, 10125, 10368, 10584, 10648, 10800, 10976, 11664, 13500, 13824, 15552, 16000, 16200, 16875, 17496, 17576, 18000
Offset: 1
Examples
216 is in the sequence since rad(12) | rad(18), but 12 does not divide 18 and 18 does not divide 12. 432 is a term since rad(18) | rad(24), but 18 does not divide 24 and 24 does not divide 18. Table of coreful divisors d, a(n)/d such that neither d | a(n)/d nor a(n)/d | d for select a(n) n | a(n) divisor pairs d X a(n)/d --------------------------------------------------------------------------- 1 | 216: 12 X 18; 2 | 432: 18 X 24; 3 | 648: 12 X 54; 4 | 864: 24 X 36, 18 X 48; 5 | 1000: 20 X 50; 6 | 1296: 24 X 54; 7 | 1728: 18 X 96, 36 X 48; 8 | 1944: 12 X 162, 36 X 54; 9 | 2000: 40 X 50; 10 | 2592: 24 X 108, 48 X 54; 11 | 2744: 28 X 98; 12 | 3375: 45 X 75; 13 | 3456: 18 X 192, 36 X 96, 48 X 72; 22 | 7776: 24 X 324, 48 X 162, 54 X 144, 72 X 108; 58 | 31104: 48 X 648, 54 X 576, 96 X 324, 108 X 288, 144 X 216, 162 X 192
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Michael De Vlieger, Notes on this sequence
Crossrefs
Programs
-
Mathematica
Union@ Select[ Flatten@ Table[a^2*b^3, {b, Surd[#, 3]}, {a, Sqrt[#/b^3]}] &[20000], Length@ Select[FactorInteger[#][[All, -1]], # > 2 &] >= 2 &]
Formula
Sum_{n>=1} 1/a(n) = zeta(2)*zeta(3)/zeta(6) - (15/Pi^2) * (1 + Sum_{prime} 1/((p-1)*(p^2+1))) = 0.021194288968234037106579437374641326044... . - Amiram Eldar, Nov 08 2024
Comments