cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376936 Powerful numbers divisible by cubes of 2 distinct primes.

Original entry on oeis.org

216, 432, 648, 864, 1000, 1296, 1728, 1944, 2000, 2592, 2744, 3375, 3456, 3888, 4000, 5000, 5184, 5400, 5488, 5832, 6912, 7776, 8000, 9000, 9261, 10000, 10125, 10368, 10584, 10648, 10800, 10976, 11664, 13500, 13824, 15552, 16000, 16200, 16875, 17496, 17576, 18000
Offset: 1

Views

Author

Michael De Vlieger, Oct 16 2024

Keywords

Comments

Numbers m with coreful divisors d, m/d such that neither d | m/d nor m/d | d, i.e., numbers m such that there exists a divisor pair (d, m/d) such that rad(d) = rad(m/d) but gcd(d, m/d) > 1 is neither d nor m/d, where rad = A007947. Divisors in each pair must be dissimilar and each in A126706.
Proper subset of A320966.
Contains A372695, A177493, and A162142. Does not contain A085986.

Examples

			216 is in the sequence since rad(12) | rad(18), but 12 does not divide 18 and 18 does not divide 12.
432 is a term since rad(18) | rad(24), but 18 does not divide 24 and 24 does not divide 18.
Table of coreful divisors d, a(n)/d such that neither d | a(n)/d nor a(n)/d | d for select a(n)
   n |   a(n)   divisor pairs d X a(n)/d
  ---------------------------------------------------------------------------
   1 |   216:   12 X 18;
   2 |   432:   18 X 24;
   3 |   648:   12 X 54;
   4 |   864:   24 X 36, 18 X 48;
   5 |  1000:   20 X 50;
   6 |  1296:   24 X 54;
   7 |  1728:   18 X 96, 36 X 48;
   8 |  1944:   12 X 162, 36 X 54;
   9 |  2000:   40 X 50;
  10 |  2592:   24 X 108, 48 X 54;
  11 |  2744:   28 X 98;
  12 |  3375:   45 X 75;
  13 |  3456:   18 X 192, 36 X 96, 48 X 72;
  22 |  7776:   24 X 324, 48 X 162, 54 X 144, 72 X 108;
  58 | 31104:   48 X 648, 54 X 576, 96 X 324, 108 X 288, 144 X 216, 162 X 192
		

Crossrefs

Programs

  • Mathematica
    Union@ Select[
      Flatten@ Table[a^2*b^3, {b, Surd[#, 3]}, {a, Sqrt[#/b^3]}] &[20000],
      Length@ Select[FactorInteger[#][[All, -1]], # > 2 &] >= 2 &]

Formula

Sum_{n>=1} 1/a(n) = zeta(2)*zeta(3)/zeta(6) - (15/Pi^2) * (1 + Sum_{prime} 1/((p-1)*(p^2+1))) = 0.021194288968234037106579437374641326044... . - Amiram Eldar, Nov 08 2024