cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376942 Irregular table read by rows: row(n) is the lexicographically earliest sequence of positive integers a(n,1), a(n,2), ... a(n,k) such that Sum_{m = n..(n+k-1)} 1/(m*a(n,m-n+1)) <= 1.

Original entry on oeis.org

1, 1, 1, 2, 5, 100, 1, 1, 1, 1, 3, 53, 4947, 66072132, 1, 1, 1, 1, 1, 1, 23, 5270, 27999510, 1, 1, 1, 1, 1, 1, 1, 2, 4, 28, 8851, 1395426533, 3665346274452116372, 53925647181443925794153448868309082440, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 7, 95, 54570, 3932969040, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 45, 2685, 8685204, 98388241169400
Offset: 1

Views

Author

Scott R. Shannon, Oct 12 2024

Keywords

Comments

The terms in each row can grow rapidly in size, e.g., the 63rd and final term in row(25), 36333...86400, has 1728101 digits.
Conjecture: all rows have finite length.

Examples

			row(1) = 1 as 1/(1*1) = 1.
row(2) = 1, 1, 2, 5, 100 as 1/(2*1) + 1/(3*1) + 1/(4*2) + 1/(5*5) + 1/(6*100) = 1.
row(3) = 1, 1, 1, 1, 3, 53, 4947, 66072132 as 1/(3*1) + 1/(4*1) + 1/(5*1) + 1/(6*1) + 1/(7*3) + 1/(8*53) + 1/(9*4947) + 1/(10*66072132) = 1.
.
The table begins:
1;
1, 1, 2, 5, 100;
1, 1, 1, 1, 3, 53, 4947, 66072132;
1, 1, 1, 1, 1, 1, 23, 5270, 27999510;
1, 1, 1, 1, 1, 1, 1, 2, 4, 28, 8851, 1395426533, 3665346274452116372, 53925647181443925794153448868309082440;
1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 7, 95, 54570, 3932969040;
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 45, 2685, 8685204, 98388241169400;
.
.
.
See the attached file for rows up to n = 25.
		

Crossrefs