A376947 G.f.: Sum_{k>=0} 2^k * x^(k*(k+1)) / Product_{j=1..k} (1 - x^j).
1, 0, 2, 2, 2, 2, 6, 6, 10, 10, 14, 14, 26, 26, 38, 46, 58, 66, 86, 94, 130, 146, 182, 214, 274, 306, 382, 438, 530, 602, 750, 838, 1018, 1162, 1390, 1598, 1898, 2154, 2550, 2910, 3402, 3858, 4550, 5134, 5970, 6786, 7846, 8902, 10306, 11618, 13390, 15142, 17346, 19562, 22398
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..10000
Programs
-
Mathematica
nmax = 80; CoefficientList[Series[Sum[2^k*x^(k*(k+1)) / Product[1-x^j, {j, 1, k}], {k, 0, Sqrt[nmax]}], {x, 0, nmax}], x]
Formula
a(n) ~ (Pi^2/6 + log(2)^2)^(1/4) * exp(sqrt((Pi^2/3 + 2*log(2)^2)*n)) / (2^(7/4) * sqrt(3*Pi) * n^(3/4)).
Comments