cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376948 G.f.: Sum_{k>=0} 2^k * x^(k^2) / Product_{j=1..k} (1 - x^j).

This page as a plain text file.
%I A376948 #7 Oct 10 2024 06:53:21
%S A376948 1,2,2,2,6,6,10,10,14,22,26,34,46,54,66,82,110,126,162,194,246,286,
%T A376948 354,410,502,606,714,842,1014,1190,1418,1658,1950,2278,2666,3090,3646,
%U A376948 4198,4882,5634,6558,7534,8754,10002,11558,13230,15218,17322,19910,22702,25914,29466,33606
%N A376948 G.f.: Sum_{k>=0} 2^k * x^(k^2) / Product_{j=1..k} (1 - x^j).
%H A376948 Vaclav Kotesovec, <a href="/A376948/b376948.txt">Table of n, a(n) for n = 0..10000</a>
%F A376948 a(n) ~ (Pi^2/6 + log(2)^2)^(1/4) * exp(sqrt((Pi^2/3 + 2*log(2)^2)*n)) / (2^(3/4) * sqrt(3*Pi) * n^(3/4)).
%t A376948 nmax = 80; CoefficientList[Series[Sum[2^k*x^(k^2) / Product[1-x^j, {j, 1, k}], {k, 0, Sqrt[nmax]}], {x, 0, nmax}], x]
%Y A376948 Cf. A003114, A032302, A376945, A376947.
%K A376948 nonn
%O A376948 0,2
%A A376948 _Vaclav Kotesovec_, Oct 10 2024