cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376952 a(n) = least k such that (n*Pi/2)^(2k)/(2 k)! < 1.

This page as a plain text file.
%I A376952 #9 Oct 16 2024 21:37:24
%S A376952 1,2,4,6,8,10,12,14,16,18,20,23,25,27,29,31,33,35,37,39,42,44,46,48,
%T A376952 50,52,54,56,59,61,63,65,67,69,71,73,76,78,80,82,84,86,88,91,93,95,97,
%U A376952 99,101,103,105,108,110,112,114,116,118,120,122,125,127,129
%N A376952 a(n) = least k such that (n*Pi/2)^(2k)/(2 k)! < 1.
%C A376952 The numbers (n*Pi/2)^(2k)/(2 k)! are the coefficients in the Maclaurin series for cos x when x = n*Pi/2.  If m>a(n), then (m*Pi/2)^(2k)/(2 k)! < 1. A375057 is a bisection of this sequence.
%F A376952 a(n) ~ Pi*exp(1)*n/4 - log(n)/4. - _Vaclav Kotesovec_, Oct 13 2024
%t A376952 a[n_] := Select[Range[300], (n Pi/2)^(2 #)/(2 #)! < 1 &, 1];
%t A376952 Flatten[Table[a[n], {n, 0, 200}]]
%Y A376952 Cf. A370507, A376953, A376954, A376955, A376956, A376957, A376958, A376959, A376960.
%K A376952 nonn
%O A376952 0,2
%A A376952 _Clark Kimberling_, Oct 12 2024