This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A376954 #10 Oct 16 2024 21:37:46 %S A376954 1,2,5,8,11,13,16,19,22,25,27,30,33,36,39,42,44,47,50,53,56,59,61,64, %T A376954 67,70,73,76,78,81,84,87,90,93,95,98,101,104,107,110,113,115,118,121, %U A376954 124,127,130,132,135,138,141,144,147,149,152,155,158,161,164,167 %N A376954 a(n) = least k such that (2n*Pi/3)^(2k)/(2 k)! < 1. %C A376954 The numbers (2n*Pi/3)^(2k)/(2 k)! are the coefficients in the Maclaurin series for cos x when x = 2n*Pi/3. If m>a(n), then (2m*Pi/3)^(2k)/(2 k)! < 1. A375057 is a trisection of this sequence. %F A376954 a(n) ~ Pi*exp(1)*n/3 - log(n)/4. - _Vaclav Kotesovec_, Oct 13 2024 %t A376954 a[n_] := Select[Range[200], (2n Pi/3)^(2 #)/(2 #)! < 1 &, 1]; %t A376954 Flatten[Table[a[n], {n, 0, 200}]] %Y A376954 Cf. A370507, A376952, A376953, A376955, A376956, A376957, A376958, A376959, A376960. %K A376954 nonn %O A376954 0,2 %A A376954 _Clark Kimberling_, Oct 12 2024