This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A376956 #10 Oct 16 2024 22:26:49 %S A376956 1,1,2,4,5,6,7,9,10,11,13,14,15,17,18,19,21,22,24,25,26,28,29,30,32, %T A376956 33,34,36,37,38,40,41,42,44,45,46,48,49,51,52,53,55,56,57,59,60,61,63, %U A376956 64,65,67,68,69,71,72,74,75,76,78,79,80,82,83,84,86,87,88 %N A376956 a(n) = least k such that n^(2k)/(2 k)! < 1. %C A376956 The numbers n^(2k)/(2 k)! are the coefficients in the Maclaurin series for cos x when x = 1. If m>a(n), then n^(2k)/(2 k)! < 1. %F A376956 a(n) ~ exp(1)*n/2 - log(n)/4. - _Vaclav Kotesovec_, Oct 13 2024 %t A376956 a[n_] := Select[Range[200], n^(2 #)/(2 #)! < 1 &, 1]; %t A376956 Flatten[Table[a[n], {n, 0, 200}]] %o A376956 (Python) %o A376956 from itertools import count %o A376956 from math import gcd %o A376956 def A376956(n): %o A376956 a, b = 1, 1 %o A376956 for k in count(1): %o A376956 a *= n**2 %o A376956 b *= (m:=k<<1)*(m-1) %o A376956 if a < b: return k %o A376956 c = gcd(a,b) %o A376956 a, b = a//c, b//c # _Chai Wah Wu_, Oct 16 2024 %Y A376956 Cf. A370507, A376284, A376952, A376953, A376954, A376955, A376957, A376958, A376959, A376960. %K A376956 nonn %O A376956 0,3 %A A376956 _Clark Kimberling_, Oct 12 2024