A376961 Length of the shortest side of the doubly golden triangle (A152149) that has area 1.
1, 1, 8, 9, 1, 1, 9, 7, 5, 4, 2, 6, 7, 0, 0, 8, 0, 1, 3, 5, 9, 2, 9, 1, 5, 7, 0, 5, 5, 0, 5, 3, 7, 4, 8, 5, 9, 6, 4, 6, 2, 5, 8, 0, 2, 2, 0, 4, 9, 3, 6, 0, 5, 6, 4, 9, 5, 4, 1, 8, 0, 2, 0, 9, 1, 2, 2, 5, 8, 8, 7, 1, 8, 6, 7, 2, 0, 6, 9, 8, 5, 6, 2, 1, 8, 0
Offset: 1
Examples
1.189119754267008013592915705505374859646258022049...
Programs
-
Mathematica
r = (1 + 5^(1/2))/2; b = FindRoot[Sin[r*t + t] == r*Sin[t], {t, 1}, WorkingPrecision -> 120][[1, 2]]; c = r*b ; (* angle C, where b = angle B *) a = Pi - r^2 b; (* angle A *) {a1, b1, c1} = {Sin[a], Sin[b], Sin[c]} k = 2/((a1 + b1 + c1) (-a1 + b1 + c1) (-b1 + c1 + a1) (-c1 + a1 + b1))^(1/4) {k a1, k b1, k c1} (* sidelengths *) k*b1 (* length of shortest side *) RealDigits[k b1][[1]] (* this sequence *)
Comments