This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A376971 #29 Oct 20 2024 13:53:07 %S A376971 1,0,0,0,0,0,1,1,0,0,0,0,1,0,0,0,0,1,2,1,0,0,0,1,2,1,1,0,0,1,2,3,1,0, %T A376971 0,1,3,1,1,0,0,4,5,4,1,0,0,6,7,4,3,0,0,8,10,11,3,0,0,12,14,8,5,1,0,22, %U A376971 21,21,7,0,0,34,32,20,12,2,0,50,48,48,16,1,1,76,69,48,27,8,1 %N A376971 Number of polycubes of size n and symmetry class G (full symmetry). %C A376971 See link "Counting free polycubes" for explanation of notation. %C A376971 a(n) = 0 if and only if n is in the set {2, 3, 4, 5, 6, 9, 10, 11, 12, 14, 15, 16, 17, 21, 22, 23, 28, 29, 34, 35, 40, 41, 46, 47, 52, 53, 58, 59, 65, 70, 71, 77}. (See link "Polycubes with full symmetry".) - _Pontus von Brömssen_, Oct 12 2024 %C A376971 Conjecture: For n >= 62, a(n) > a(n-1) if and only if n is a multiple of 6. - _Pontus von Brömssen_, Oct 20 2024 %H A376971 Pontus von Brömssen, <a href="/A376971/b376971.txt">Table of n, a(n) for n = 1..233</a> %H A376971 Pontus von Brömssen, <a href="/A376971/a376971.png">Polycubes with full symmetry</a>. %H A376971 John Mason, <a href="/A038119/a038119_1.pdf">Counting free polycubes</a> %Y A376971 Cf. A000162, A038119, A142886 (polyominoes with full symmetry), A066288 (symmetric with rotations, group order 24). %K A376971 nonn %O A376971 1,19 %A A376971 _John Mason_, Oct 11 2024 %E A376971 a(32)-a(36) from _Pontus von Brömssen_, Oct 14 2024 %E A376971 More terms from _Pontus von Brömssen_, Oct 20 2024