This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A376992 #19 Oct 14 2024 02:55:33 %S A376992 5,13,113,1013,10513,100801,1006781,10030721,100040513,1001057513, %T A376992 10000515313,100016728501,1000078402181,10000013617661, %U A376992 100000472012281,1000000064846161,10000005481873013,100000002459693601,1000000116852093013,10000000062611784481,100000001234170737761 %N A376992 a(n) is the least n-digit prime of the form j^2 + (j+1)^2. %F A376992 Conjecture: a(n+1)/a(n) ~ 10. %p A376992 f:= proc(n) local j,x; %p A376992 for j from ceil((sqrt(2*10^(n-1)-1)-1)/2) do %p A376992 x:= j^2 + (j+1)^2; %p A376992 if isprime(x) then return x fi %p A376992 od %p A376992 end proc: %p A376992 map(f, [$1..40]); # _Robert Israel_, Oct 13 2024 %t A376992 a[n_]:=Module[{k=1}, While[!PrimeQ[m=2k^2+2k+1]||IntegerLength[m]<n, k++]; m]; Array[a, 15] %o A376992 (Python) %o A376992 from math import isqrt %o A376992 from itertools import count %o A376992 from sympy import prime %o A376992 def A376992(n): %o A376992 for k in count(isqrt(((a:=10**(n-1))<<1)-1>>2)): %o A376992 m = 2*k*(k+1)+1 %o A376992 if m >= a and isprime(m): %o A376992 return m # _Chai Wah Wu_, Oct 13 2024 %Y A376992 Cf. A001844, A027861, A027862, A376907, A376993. %K A376992 nonn,base %O A376992 1,1 %A A376992 _Stefano Spezia_, Oct 11 2024