cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376995 a(n) = floor(b(n)), where b(1) = 1 and b(n) = b(n-1) + Sum_{k=1..n-1} b(k)/(n-1).

Original entry on oeis.org

1, 2, 3, 5, 8, 12, 18, 25, 35, 48, 64, 85, 111, 143, 184, 234, 296, 371, 463, 575, 709, 872, 1066, 1298, 1575, 1903, 2293, 2752, 3294, 3931, 4677, 5550, 6570, 7757, 9138, 10741, 12597, 14744, 17222, 20078, 23365, 27141, 31474, 36438, 42118, 48607, 56012, 64451, 74057
Offset: 1

Views

Author

Vaclav Kotesovec, Oct 12 2024

Keywords

Crossrefs

Programs

  • Mathematica
    b[1]=1; b[n_]:=b[n] = b[n-1] + Sum[b[i], {i, 1, n-1}]/(n-1); Table[b[n], {n, 1, 50}] // Floor
    Clear[b]; RecurrenceTable[{b[n] == 2*b[n-1] - (1-1/(n-1))*b[n-2], b[1]==1, b[2]==2}, b, {n, 1, 50}] // Floor
    Table[HypergeometricPFQ[{n}, {1}, 1]/E, {n, 1, 50}] // Floor
    Rest[CoefficientList[Series[x*E^(x/(1-x))/(1-x), {x, 0, 50}], x]] // Floor
    nmax = 50; Rest[CoefficientList[Series[Integrate[Exp[t]*BesselI[0, 2*Sqrt[t]], {t, 0, x}], {x, 0, nmax}], x] * Range[0, nmax]!] // Floor
    Table[LaguerreL[n-1, -1], {n, 1, 50}] // Floor

Formula

a(n) = floor(b(n)), where b(n) = 2*b(n-1) - (1 - 1/(n-1))*b(n-2), b(1)=1, b(2)=2.
a(n) ~ exp(2*sqrt(n) - 1/2) / (2*sqrt(Pi)*n^(1/4)).
a(n) ~ exp(-1/2) * BesselI(0, 2*sqrt(n)).
a(n) = floor(A160617(n-1)/A160618(n-1)).