A376999 a(n) is the least number k that is a quadratic residue modulo prime(n) but is a quadratic nonresidue modulo all previous odd primes.
0, 5, 2, 38, 17, 83, 362, 167, 227, 2273, 398, 5297, 64382, 69467, 116387, 238262, 214037, 430022, 5472953, 9481097, 8062073, 41941577, 86374763, 312521282
Offset: 2
Keywords
Examples
a(5) = 38 because 38 is a quadratic residue modulo prime(5) = 11 but is not a quadratic residue modulo the previous odd primes 3, 5 and 7, and no number smaller than 38 works.
Crossrefs
Cf. A377212.
Programs
-
Maple
f:= proc(n) local k,p; p:= 2; for k from 2 do p:= nextprime(p); if numtheory:-quadres(n,p) = 1 then return k fi od end proc: V:= Array(2..25): count:= 0: for k from 2 while count < 24 do v:= f(k); if v > 0 and v <= 25 and V[v] = 0 then V[v]:= k; count:= count+1; fi; od: V[2]:= 0: convert(V,list);