cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377000 Array read by ascending antidiagonals: T(n,k) = number of n-esthetic numbers with k digits.

Original entry on oeis.org

1, 2, 1, 3, 3, 1, 4, 5, 4, 1, 5, 7, 8, 6, 1, 6, 9, 12, 13, 8, 1, 7, 11, 16, 21, 21, 12, 1, 8, 13, 20, 29, 36, 34, 16, 1, 9, 15, 24, 37, 52, 63, 55, 24, 1, 10, 17, 28, 45, 68, 94, 108, 89, 32, 1, 11, 19, 32, 53, 84, 126, 169, 189, 144, 48, 1, 12, 21, 36, 61, 100, 158, 232, 305, 324, 233, 64, 1
Offset: 2

Views

Author

Paolo Xausa, Oct 12 2024

Keywords

Comments

A number is n-esthetic if, when written in base n, adjacent digits differ by 1: see De Koninck and Doyon (2009), where T(n,k) is denoted by N_q(r).

Examples

			Array begins (cf. De Koninck and Doyon (2009), table on p. 155):
  n\k| 1   2   3   4    5    6    7    8     9    10  ...
  -------------------------------------------------------
   2 | 1,  1,  1,  1,   1,   1,   1,   1,    1,    1, ... = A000012
   3 | 2,  3,  4,  6,   8,  12,  16,  24,   32,   48, ... = A029744 (from n = 2)
   4 | 3,  5,  8, 13,  21,  34,  55,  89,  144,  233, ... = A000045 (from n = 4)
   5 | 4,  7, 12, 21,  36,  63, 108, 189,  324,  567, ... = A228879
   6 | 5,  9, 16, 29,  52,  94, 169, 305,  549,  990, ...
   7 | 6, 11, 20, 37,  68, 126, 232, 430,  792, 1468, ...
   8 | 7, 13, 24, 45,  84, 158, 296, 557, 1045, 1966, ...
   9 | 8, 15, 28, 53, 100, 190, 360, 685, 1300, 2475, ...
  10 | 9, 17, 32, 61, 116, 222, 424, 813, 1556, 2986, ... = A090994
  ...                                               \______ A152086 (main diagonal)
		

Crossrefs

Cf. A000012 (row n = 2), A029744 (row n = 3), A000045 (row n = 4), A228879 (row n = 5), A090994 (row n = 10).
Cf. A102699, A152086 (main diagonal).
Diagonal above the main diagonal appears to be A206603.

Programs

  • Mathematica
    A377000[n_, k_] := Round[2^k/(n+1)*Sum[If[m != (n+1)/2, Cos[#]^k*(Cot[#] + Csc[#])^2 & [Pi*m/(n+1)], 0], {m, 1, n, 2}]];
    Table[A377000[n-k+1, k], {n, 2, 15}, {k, n-1}]
  • Python
    from itertools import count, islice
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A377000_N(q,r,i):
        if r==1 and i==0: return 0
        if r==1: return 1
        if q==2: return r+i&1^1
        if i == 0: return A377000_N(q,r-1,1)
        if i == q-1: return A377000_N(q,r-1,q-2)
        return A377000_N(q,r-1,i-1)+A377000_N(q,r-1,i+1)
    def A377000_T(n,k): return sum(A377000_N(n,k,i) for i in range(n))
    def A377000_gen(): # generator of terms
        for n in count(2):
            for k in range(1,n):
                yield A377000_T(n-k+1,k)
    A377000_list = list(islice(A377000_gen(),100)) # Chai Wah Wu, Oct 21 2024

Formula

All of the following formulas are taken from De Koninck and Doyon (2009).
T(n,k) = 2^k/(n+1) * Sum_{m=1..n, m odd, m != (n+1)/2} cos(p)^k*(cot(p) + csc(p))^2, where p = Pi*m/(n+1).
T(n,1) = n - 1.
T(2,k) = 1.
T(3,k) = 2^((k+1)/2) if k is odd, 3*2^((k-2)/2) if k is even = A029744(k+1).
T(4,k) = A000045(k+3).
T(5,k) = 4*3^((k-1)/2) if k is odd, 7*3^((k-2)/2) if k is even = A228879(k-1).
Conjectures from Chai Wah Wu, Oct 21 2024: (Start)
Conjecture 1: For even n, T(n,k) is the number of meaningful differential operations of the k-th order on the space R^(n-1).
Conjecture 2: For each n, the row T(n,k) satisfies a linear recurrence. For example:
T(6,k) = T(6,k-1) + 2*T(6,k-2) - T(6,k-3) for k > 3 (A090990).
T(7,k) = 4*T(7,k-2) - 2*T(7,k-4) for k > 4.
T(8,k) = T(8,k-1) + 3*T(8,k-2) - 2*T(8,k-3) - T(8,k-4) for k > 4 (A090992).
T(9,k) = 5*T(9,k-2) - 5*T(9,k-4) for k > 4.
T(10,k) = T(10,k-1) + 4*T(10,k-2) - 3*T(10,k-3) - 3*T(10,k-4) + T(10,k-5) for k > 5.
T(11,k) = 6*T(11,k-2) - 9*T(11,k-4) + 2*T(11,k-6) for k > 6.
T(12,k) = T(12,k-1) + 5*T(12,k-2) - 4*T(12,k-3) - 6*T(12,k-4) + 3*T(12,k-5) + T(12,k-6) for k > 6 (A129638).
...
Note that for even n, Conjecture 1 implies Conjecture 2 due to (Malesevic, 1998).
Conjecture 3: T(n,n-2) = A182555(n-2). (End)