A377000 Array read by ascending antidiagonals: T(n,k) = number of n-esthetic numbers with k digits.
1, 2, 1, 3, 3, 1, 4, 5, 4, 1, 5, 7, 8, 6, 1, 6, 9, 12, 13, 8, 1, 7, 11, 16, 21, 21, 12, 1, 8, 13, 20, 29, 36, 34, 16, 1, 9, 15, 24, 37, 52, 63, 55, 24, 1, 10, 17, 28, 45, 68, 94, 108, 89, 32, 1, 11, 19, 32, 53, 84, 126, 169, 189, 144, 48, 1, 12, 21, 36, 61, 100, 158, 232, 305, 324, 233, 64, 1
Offset: 2
Examples
Array begins (cf. De Koninck and Doyon (2009), table on p. 155): n\k| 1 2 3 4 5 6 7 8 9 10 ... ------------------------------------------------------- 2 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... = A000012 3 | 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, ... = A029744 (from n = 2) 4 | 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ... = A000045 (from n = 4) 5 | 4, 7, 12, 21, 36, 63, 108, 189, 324, 567, ... = A228879 6 | 5, 9, 16, 29, 52, 94, 169, 305, 549, 990, ... 7 | 6, 11, 20, 37, 68, 126, 232, 430, 792, 1468, ... 8 | 7, 13, 24, 45, 84, 158, 296, 557, 1045, 1966, ... 9 | 8, 15, 28, 53, 100, 190, 360, 685, 1300, 2475, ... 10 | 9, 17, 32, 61, 116, 222, 424, 813, 1556, 2986, ... = A090994 ... \______ A152086 (main diagonal)
Links
- Paolo Xausa, Table of n, a(n) for n = 2..11326 (first 150 antidiagonals, flattened).
- Jean-Marie De Koninck and Nicolas Doyon, Esthetic Numbers, Ann. Sci. Math. Québec 33 (2009), No. 2, pp. 155-164.
- Giovanni Resta, Esthetic Numbers, Numbers Aplenty, 2013.
- Branko J. Malesevic, Some combinatorial aspects of differential operation composition on the space R^n, Univ. Beograd, Publ. Elektrotehn. Fak., Ser. Mat. 9 (1998), 29-33 (arXiv version, arXiv:0704.0750 [math.DG], 2007).
Crossrefs
Programs
-
Mathematica
A377000[n_, k_] := Round[2^k/(n+1)*Sum[If[m != (n+1)/2, Cos[#]^k*(Cot[#] + Csc[#])^2 & [Pi*m/(n+1)], 0], {m, 1, n, 2}]]; Table[A377000[n-k+1, k], {n, 2, 15}, {k, n-1}]
-
Python
from itertools import count, islice from functools import lru_cache @lru_cache(maxsize=None) def A377000_N(q,r,i): if r==1 and i==0: return 0 if r==1: return 1 if q==2: return r+i&1^1 if i == 0: return A377000_N(q,r-1,1) if i == q-1: return A377000_N(q,r-1,q-2) return A377000_N(q,r-1,i-1)+A377000_N(q,r-1,i+1) def A377000_T(n,k): return sum(A377000_N(n,k,i) for i in range(n)) def A377000_gen(): # generator of terms for n in count(2): for k in range(1,n): yield A377000_T(n-k+1,k) A377000_list = list(islice(A377000_gen(),100)) # Chai Wah Wu, Oct 21 2024
Formula
All of the following formulas are taken from De Koninck and Doyon (2009).
T(n,k) = 2^k/(n+1) * Sum_{m=1..n, m odd, m != (n+1)/2} cos(p)^k*(cot(p) + csc(p))^2, where p = Pi*m/(n+1).
T(n,1) = n - 1.
T(2,k) = 1.
T(3,k) = 2^((k+1)/2) if k is odd, 3*2^((k-2)/2) if k is even = A029744(k+1).
T(4,k) = A000045(k+3).
T(5,k) = 4*3^((k-1)/2) if k is odd, 7*3^((k-2)/2) if k is even = A228879(k-1).
Conjectures from Chai Wah Wu, Oct 21 2024: (Start)
Conjecture 1: For even n, T(n,k) is the number of meaningful differential operations of the k-th order on the space R^(n-1).
Conjecture 2: For each n, the row T(n,k) satisfies a linear recurrence. For example:
T(6,k) = T(6,k-1) + 2*T(6,k-2) - T(6,k-3) for k > 3 (A090990).
T(7,k) = 4*T(7,k-2) - 2*T(7,k-4) for k > 4.
T(8,k) = T(8,k-1) + 3*T(8,k-2) - 2*T(8,k-3) - T(8,k-4) for k > 4 (A090992).
T(9,k) = 5*T(9,k-2) - 5*T(9,k-4) for k > 4.
T(10,k) = T(10,k-1) + 4*T(10,k-2) - 3*T(10,k-3) - 3*T(10,k-4) + T(10,k-5) for k > 5.
T(11,k) = 6*T(11,k-2) - 9*T(11,k-4) + 2*T(11,k-6) for k > 6.
T(12,k) = T(12,k-1) + 5*T(12,k-2) - 4*T(12,k-3) - 6*T(12,k-4) + 3*T(12,k-5) + T(12,k-6) for k > 6 (A129638).
...
Note that for even n, Conjecture 1 implies Conjecture 2 due to (Malesevic, 1998).
Conjecture 3: T(n,n-2) = A182555(n-2). (End)
Comments