This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A377007 #7 Oct 12 2024 21:32:57 %S A377007 1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,3,3,1,1,1,1,4,7,4,1,1,1,1,5,19,19, %T A377007 5,1,1,1,1,7,46,194,46,7,1,1,1,1,8,132,3144,3144,132,8,1,1,1,1,10,345, %U A377007 65548,601055,65548,345,10,1,1,1,1,12,951,1272696,128665248,128665248,1272696,951,12,1,1 %N A377007 Array read by antidiagonals: T(n,k) is the number of inequivalent 2*n X 2*k binary matrices with all row sums k and column sums n up to permutations of rows and columns. %C A377007 Terms may be computed without generating each matrix by enumerating the number of matrices by column sum sequence using dynamic programming. A PARI program showing this technique for the labeled case is given in A376935. Burnside's lemma can be used to extend this method to the unlabeled case. This seems to require looping over partitions for both rows and columns. %H A377007 Andrew Howroyd, <a href="/A377007/b377007.txt">Table of n, a(n) for n = 0..119</a> (first 15 antidiagonals) %F A377007 T(n,k) = T(k,n). %e A377007 Array begins: %e A377007 ============================================================================ %e A377007 n\k | 0 1 2 3 4 5 6 7 ... %e A377007 ----+----------------------------------------------------------------------- %e A377007 0 | 1 1 1 1 1 1 1 1 ... %e A377007 1 | 1 1 1 1 1 1 1 1 ... %e A377007 2 | 1 1 2 3 4 5 7 8 ... %e A377007 3 | 1 1 3 7 19 46 132 345 ... %e A377007 4 | 1 1 4 19 194 3144 65548 1272696 ... %e A377007 5 | 1 1 5 46 3144 601055 128665248 24124134235 ... %e A377007 6 | 1 1 7 132 65548 128665248 294494683312 607662931576945 ... %e A377007 7 | 1 1 8 345 1272696 24124134235 607662931576945 14584161564179926207 ... %e A377007 ... %Y A377007 Main diagonal is A333740. %Y A377007 Columns k=0..6 are A000012, A000012, A001399, A377003, A377004, A377005, A377006. %Y A377007 Cf. A133687, A376935. %K A377007 nonn,tabl %O A377007 0,13 %A A377007 _Andrew Howroyd_, Oct 12 2024