cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377008 Decimal expansion of Sum_{k>=1} (zeta(2*k)/k)*(2/3)^(2*k).

This page as a plain text file.
%I A377008 #15 Apr 26 2025 05:59:52
%S A377008 8,8,3,1,0,5,8,1,3,9,6,7,1,2,6,2,5,5,8,8,5,0,2,3,7,3,8,8,8,5,6,2,3,2,
%T A377008 9,0,8,2,7,0,5,9,2,4,4,9,0,1,6,9,7,9,0,2,1,5,2,9,4,1,5,9,0,0,0,2,6,8,
%U A377008 3,5,7,3,9,9,6,3,0,2,0,6,0,6,8,4,9,2,6,2,9,2,0,4,7,7,2,8,9,4,9,6,0,4,0,5,7
%N A377008 Decimal expansion of Sum_{k>=1} (zeta(2*k)/k)*(2/3)^(2*k).
%D A377008 H. M. Srivastava and Junesang Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Insights, 2011, p. 272, eq. (29).
%H A377008 Eric Weisstein's MathWorld, <a href="https://mathworld.wolfram.com/RiemannZetaFunction.html">Riemann Zeta Function</a>.
%H A377008 Wikipedia, <a href="http://en.wikipedia.org/wiki/Riemann_zeta_function">Riemann zeta function</a>.
%F A377008 Equals log(4*Pi/(3*sqrt(3))) = log(A275486).
%F A377008 Equals log(Gamma(1/3)*Gamma(5/3)).
%e A377008 0.88310581396712625588502373888562329082705924490169...
%t A377008 RealDigits[Log[4*Pi/(3*Sqrt[3])], 10, 120][[1]]
%t A377008 (* or *)
%t A377008 RealDigits[Log[Gamma[1/3]*Gamma[5/3]], 10, 120][[1]]
%o A377008 (PARI) log(4*Pi/(3*sqrt(3)))
%o A377008 (PARI) log(gamma(1/3)*gamma(5/3))
%Y A377008 Cf. A073005, A203129, A256923, A275486.
%K A377008 nonn,cons,easy
%O A377008 0,1
%A A377008 _Amiram Eldar_, Oct 12 2024