cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377016 Semiperimeter of the unique primitive Pythagorean triple whose short leg is A002315(n) and such that its long leg and its hypotenuse are consecutive natural numbers.

This page as a plain text file.
%I A377016 #26 Jul 13 2025 17:33:53
%S A377016 1,28,861,28680,970921,32963140,1119662181,38034888528,1292062686481,
%T A377016 43892073946540,1491038320325421,50651410052600280,
%U A377016 1720656899012149561,58451683130389395028,1985636569382856677301,67453191675004485098400,2291422880375627492063521,77840924741066359629967420
%N A377016 Semiperimeter of the unique primitive Pythagorean triple whose short leg is A002315(n) and such that its long leg and its hypotenuse are consecutive natural numbers.
%C A377016 a(0) = 1 is included by convention. This corresponds to the Pythagorean triple 1^2 + 0^2 = 1^2.
%D A377016 Miguel Ángel Pérez García-Ortega, José Manuel Sánchez Muñoz and José Miguel Blanco Casado, El Libro de las Ternas Pitagóricas, Preprint 2024.
%H A377016 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (41,-246,246,-41,1).
%F A377016 a(n) = (A002315(n) + 2*A008844(n) - 1)/2.
%F A377016 G.f.: (1 - 13*x - 41*x^2 + 21*x^3)/((1 - 34*x + x^2)*(1 - 6*x + x^2)*(1 - x)). - _Andrew Howroyd_, Oct 14 2024
%e A377016 For n=2, the short leg is A002315(2) = 41 and the hypotenuse is A008844(n) = 841 so the semiperimeter is then a(2) = (41 + 840 + 841)/2 = 861.
%t A377016 s[n_]:=s[n]=Module[{a, b},a=((1+Sqrt[2])^(2n+1)-(Sqrt[2]-1)^(2n+1))/2;b=(a^2-1)/2;{(a+2b+1)/2}];semis={};Do[semis=Join[semis,FullSimplify[s[n]]],{n,0,17}];semis
%o A377016 (PARI) Vec((1 - 13*x - 41*x^2 + 21*x^3)/((1 - 34*x + x^2)*(1 - 6*x + x^2)*(1 - x)) + O(x^20)) \\ _Andrew Howroyd_, Oct 14 2024
%Y A377016 Cf. A002315, A078522, A008844.
%K A377016 nonn,easy
%O A377016 0,2
%A A377016 _Miguel-Ángel Pérez García-Ortega_, Oct 13 2024