cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377017 Area of the unique primitive Pythagorean triple whose short leg is A002315(n) and such that its long leg and its hypotenuse are consecutive natural numbers.

This page as a plain text file.
%I A377017 #34 Jul 13 2025 17:34:10
%S A377017 0,84,17220,3412920,675761016,133797385260,26491207202460,
%T A377017 5245125232676784,1038508304885968560,205619399242324129860,
%U A377017 40711602541676078766516,8060691683852625858745320,1595976241800278270688414120,315995235184771245126273789084,62565460590342906257639745449100
%N A377017 Area of the unique primitive Pythagorean triple whose short leg is A002315(n) and such that its long leg and its hypotenuse are consecutive natural numbers.
%C A377017 a(0)=0 is included by convention. This corresponds to the Pythagorean triple 1^2 + 0^2 = 1^2.
%C A377017 All terms in this sequence are divisible by 84.
%D A377017 Miguel Ángel Pérez García-Ortega, José Manuel Sánchez Muñoz and José Miguel Blanco Casado, El Libro de las Ternas Pitagóricas, Preprint 2024.
%H A377017 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (204,-1190,204,-1).
%F A377017 a(n) = A002315(n)*(A008844(n)-1)/2.
%F A377017 G.f.: 84*x*(1 + x)/((1 - 198*x + x^2)*(1 - 6*x + x^2)). - _Andrew Howroyd_, Oct 14 2024
%e A377017 For n=2, the short leg is A002315(2) = 41 and the long leg is A008844(2)-1 = 840 so the area is then a(2) = 41*840/2 = 17220.
%t A377017 s[n_]:=s[n]=Module[{a, b}, a=((1+Sqrt[2])^(2n+1)-(Sqrt[2]-1)^(2n+1))/2; b=(a^2-1)/2; {(a*b)/2}]; areas={}; Do[areas=Join[areas, FullSimplify[s[n]]], {n, 0, 17}]; areas
%Y A377017 Cf. A377016, A002315, A078522, A008844.
%K A377017 nonn
%O A377017 0,2
%A A377017 _Miguel-Ángel Pérez García-Ortega_, Oct 13 2024