This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A377023 #13 Oct 16 2024 16:35:07 %S A377023 6,0,3,6,4,8,6,7,6,0,3,6,0,1,0,3,1,9,6,7,0,7,0,2,1,1,8,0,4,2,0,5,2,6, %T A377023 8,3,0,6,7,0,4,4,6,3,0,4,0,7,0,1,7,0,0,7,4,0,5,8,5,8,0,3,6,2,1,9,1,7, %U A377023 7,8,3,7,5,6,0,3,3,9,6,7,0,6,5,4,9,7,3,0,3,7,2,3,0,1,3,5,7,4,0,0,0,5,7,9,0 %N A377023 Decimal expansion of the asymptotic constant of the product of binomial coefficients in a row of Pascal's triangle. %C A377023 The asymptotic product of binomial coefficients in the n-th row of Pascal's triangle as n goes to infinity provides an asymptotic constant C. This constant must lie in the interval [0.590727...,0.631618...), where the interval is derived from asymptotic products of binomial coefficients over the rows. Indeed, the constant C can also be derived from a limiting case of the latter products (see Kellner 2024). %C A377023 The constant C is involved with a certain constant F(1) = A213080. The constants F(1), F(2), ... occur in the context of asymptotic constants related to asymptotic products of factorials as well as of binomial and multinomial coefficients. Moreover, the sequence (F(k))_{k >= 1} is strictly decreasing with limit 1. By a divergent series expansion, it follows that F(1) lies in the interval (1.0457...,1.0492...) (see Kellner 2009 and 2024). %H A377023 Bernd C. Kellner, <a href="/A377023/b377023.txt">Table of n, a(n) for n = 0..10000</a> %H A377023 Bernd C. Kellner, <a href="https://doi.org/10.1515/INTEG.2009.009">On asymptotic constants related to products of Bernoulli numbers and factorials</a>, Integers 9 (2009), Article #A08, 83-106; <a href="https://www.emis.de/journals/INTEGERS/papers/j8/j8.Abstract.html">alternative link</a>; arXiv:<a href="https://arxiv.org/abs/math/0604505">0604505</a> [math.NT], 2006. %H A377023 Bernd C. Kellner, <a href="https://doi.org/10.5281/zenodo.12167556">Asymptotic products of binomial and multinomial coefficients revisited</a>, Integers 24 (2024), Article #A59, 10 pp.; arXiv:<a href="https://arxiv.org/abs/2312.11369">2312.11369</a> [math.CO], 2023. %F A377023 Let A = A074962 denote the Glaisher-Kinkelin constant. %F A377023 Equals 1/(A213080*(2*Pi)^(1/4)). %F A377023 Equals A^2/(exp(1/12)*(2*Pi)^(1/2)). %F A377023 Equals exp(1/12-2*zeta'(-1))/(2*Pi)^(1/2). %e A377023 0.60364867603601031967070211804205268306704463040701700740585803621917783756033... %p A377023 exp(1/12-2*Zeta(1, -1))/(2*Pi)^(1/2); evalf(%, 100); %t A377023 RealDigits[Glaisher^2/(Exp[1/12] (2 Pi)^(1/2)), 10, 100][[1]] %o A377023 (Sage) %o A377023 import mpmath %o A377023 mpmath.mp.pretty = True; mpmath.mp.dps = 100 %o A377023 mpmath.exp(1/12-2*mpmath.zeta(-1, 1, 1))/(2*pi)^(1/2) %o A377023 (PARI) %o A377023 default(realprecision, 100); %o A377023 exp(1/12-2*zeta'(-1))/(2*Pi)^(1/2) %Y A377023 Cf. A001620, A002117, A074962, A213080, A377024. %K A377023 nonn,cons %O A377023 0,1 %A A377023 _Bernd C. Kellner_, Oct 13 2024