cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377023 Decimal expansion of the asymptotic constant of the product of binomial coefficients in a row of Pascal's triangle.

This page as a plain text file.
%I A377023 #13 Oct 16 2024 16:35:07
%S A377023 6,0,3,6,4,8,6,7,6,0,3,6,0,1,0,3,1,9,6,7,0,7,0,2,1,1,8,0,4,2,0,5,2,6,
%T A377023 8,3,0,6,7,0,4,4,6,3,0,4,0,7,0,1,7,0,0,7,4,0,5,8,5,8,0,3,6,2,1,9,1,7,
%U A377023 7,8,3,7,5,6,0,3,3,9,6,7,0,6,5,4,9,7,3,0,3,7,2,3,0,1,3,5,7,4,0,0,0,5,7,9,0
%N A377023 Decimal expansion of the asymptotic constant of the product of binomial coefficients in a row of Pascal's triangle.
%C A377023 The asymptotic product of binomial coefficients in the n-th row of Pascal's triangle as n goes to infinity provides an asymptotic constant C. This constant must lie in the interval [0.590727...,0.631618...), where the interval is derived from asymptotic products of binomial coefficients over the rows. Indeed, the constant C can also be derived from a limiting case of the latter products (see Kellner 2024).
%C A377023 The constant C is involved with a certain constant F(1) = A213080. The constants F(1), F(2), ... occur in the context of asymptotic constants related to asymptotic products of factorials as well as of binomial and multinomial coefficients. Moreover, the sequence (F(k))_{k >= 1} is strictly decreasing with limit 1. By a divergent series expansion, it follows that F(1) lies in the interval (1.0457...,1.0492...) (see Kellner 2009 and 2024).
%H A377023 Bernd C. Kellner, <a href="/A377023/b377023.txt">Table of n, a(n) for n = 0..10000</a>
%H A377023 Bernd C. Kellner, <a href="https://doi.org/10.1515/INTEG.2009.009">On asymptotic constants related to products of Bernoulli numbers and factorials</a>, Integers 9 (2009), Article #A08, 83-106; <a href="https://www.emis.de/journals/INTEGERS/papers/j8/j8.Abstract.html">alternative link</a>; arXiv:<a href="https://arxiv.org/abs/math/0604505">0604505</a> [math.NT], 2006.
%H A377023 Bernd C. Kellner, <a href="https://doi.org/10.5281/zenodo.12167556">Asymptotic products of binomial and multinomial coefficients revisited</a>, Integers 24 (2024), Article #A59, 10 pp.; arXiv:<a href="https://arxiv.org/abs/2312.11369">2312.11369</a> [math.CO], 2023.
%F A377023 Let A = A074962 denote the Glaisher-Kinkelin constant.
%F A377023 Equals 1/(A213080*(2*Pi)^(1/4)).
%F A377023 Equals A^2/(exp(1/12)*(2*Pi)^(1/2)).
%F A377023 Equals exp(1/12-2*zeta'(-1))/(2*Pi)^(1/2).
%e A377023 0.60364867603601031967070211804205268306704463040701700740585803621917783756033...
%p A377023 exp(1/12-2*Zeta(1, -1))/(2*Pi)^(1/2); evalf(%, 100);
%t A377023 RealDigits[Glaisher^2/(Exp[1/12] (2 Pi)^(1/2)), 10, 100][[1]]
%o A377023 (Sage)
%o A377023 import mpmath
%o A377023 mpmath.mp.pretty = True; mpmath.mp.dps = 100
%o A377023 mpmath.exp(1/12-2*mpmath.zeta(-1, 1, 1))/(2*pi)^(1/2)
%o A377023 (PARI)
%o A377023 default(realprecision, 100);
%o A377023 exp(1/12-2*zeta'(-1))/(2*Pi)^(1/2)
%Y A377023 Cf. A001620, A002117, A074962, A213080, A377024.
%K A377023 nonn,cons
%O A377023 0,1
%A A377023 _Bernd C. Kellner_, Oct 13 2024