cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377024 Decimal expansion of the constant F(2) related to asymptotic products of factorials.

This page as a plain text file.
%I A377024 #18 Oct 16 2024 16:35:11
%S A377024 1,0,2,3,9,3,7,4,1,1,6,3,7,1,1,8,4,0,1,5,7,7,9,5,0,7,8,2,5,8,6,2,1,7,
%T A377024 8,0,0,8,0,3,7,6,0,9,8,0,4,3,6,4,4,0,0,5,1,2,9,4,6,9,9,0,9,5,1,3,4,7,
%U A377024 6,9,2,4,1,2,4,0,0,7,8,2,7,6,8,7,1,1,5,2,9,4,7,4,6,5,9,8,8,1,7,3,0,6,2,3,4,8,3,6,4,2,4
%N A377024 Decimal expansion of the constant F(2) related to asymptotic products of factorials.
%C A377024 The constants F(1) = A213080, F(2), ... occur in the context of asymptotic constants related to asymptotic products of factorials as well as of binomial and multinomial coefficients. Moreover, the sequence (F(k))_{k >= 1} is strictly decreasing with limit 1. For example, for k >= 1 the asymptotic product Prod_{v >= 1} (k*v)! has the asymptotic constant F(k)*A^k*(2*Pi)^(1/4), where A = A074962 denotes the Glaisher-Kinkelin constant. Let gamma = A001620 be Euler's constant and Gamma(x) be the gamma function.
%C A377024 For k >= 1, the constants F(k) can be computed by an explicit formula and a divergent series expansion, as follows. We have log(F(k)) = (1/(12*k))*(1-log(k)) + (k/4)*log(2*Pi) - ((k^2+1)/k)*log(A) - Sum_{v=1..k-1} (v/k)*log(Gamma(v/k)) = gamma/(12*k) - t*zeta(3)/(360*k^3) with some t in (0,1), respectively.
%C A377024 It follows that log(F(2)) = 1/24 + log(2*Pi)/4 + (5/24)*log(2) - (5/2)*log(A) = gamma/24 - t*zeta(3)/2880 with some t in (0,1), and so F(2) lies in the interval (1.023914..., 1.024342...) (see Kellner 2009 and 2024).
%H A377024 Bernd C. Kellner, <a href="/A377024/b377024.txt">Table of n, a(n) for n = 1..10000</a>
%H A377024 Bernd C. Kellner, <a href="https://doi.org/10.1515/INTEG.2009.009">On asymptotic constants related to products of Bernoulli numbers and factorials</a>, Integers 9 (2009), Article #A08, 83-106; <a href="https://www.emis.de/journals/INTEGERS/papers/j8/j8.Abstract.html">alternative link</a>; arXiv:<a href="https://arxiv.org/abs/math/0604505">0604505</a> [math.NT], 2006.
%H A377024 Bernd C. Kellner, <a href="https://doi.org/10.5281/zenodo.12167556">Asymptotic products of binomial and multinomial coefficients revisited</a>, Integers 24 (2024), Article #A59, 10 pp.; arXiv:<a href="https://arxiv.org/abs/2312.11369">2312.11369</a> [math.CO], 2023.
%F A377024 Equals exp(1/24)*(2*Pi)^(1/4)*2^(5/24)/A^(5/2) where A = A074962.
%F A377024 Equals exp(-1/6+(5/2)*zeta'(-1))*(2*Pi)^(1/4)*2^(5/24).
%e A377024 1.02393741163711840157795078258621780080376098043644005129469909513476924124007...
%p A377024 exp(-1/6+5/2*Zeta(1, -1))*(2*Pi)^(1/4)*2^(5/24); evalf(%, 100);
%t A377024 RealDigits[Exp[1/24] (2 Pi)^(1/4) 2^(5/24) / Glaisher^(5/2), 10, 100][[1]]
%o A377024 (Sage)
%o A377024 import mpmath
%o A377024 mpmath.mp.pretty = True; mpmath.mp.dps = 100
%o A377024 mpmath.exp(-1/6+5/2*mpmath.zeta(-1, 1, 1))*(2*pi)^(1/4)*2^(5/24)
%o A377024 (PARI)
%o A377024 default(realprecision, 100);
%o A377024 exp(-1/6+5/2*zeta'(-1))*(2*Pi)^(1/4)*2^(5/24)
%Y A377024 Cf. A001620, A002117, A074962, A213080, A377023.
%K A377024 nonn,cons
%O A377024 1,3
%A A377024 _Bernd C. Kellner_, Oct 13 2024