This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A377024 #18 Oct 16 2024 16:35:11 %S A377024 1,0,2,3,9,3,7,4,1,1,6,3,7,1,1,8,4,0,1,5,7,7,9,5,0,7,8,2,5,8,6,2,1,7, %T A377024 8,0,0,8,0,3,7,6,0,9,8,0,4,3,6,4,4,0,0,5,1,2,9,4,6,9,9,0,9,5,1,3,4,7, %U A377024 6,9,2,4,1,2,4,0,0,7,8,2,7,6,8,7,1,1,5,2,9,4,7,4,6,5,9,8,8,1,7,3,0,6,2,3,4,8,3,6,4,2,4 %N A377024 Decimal expansion of the constant F(2) related to asymptotic products of factorials. %C A377024 The constants F(1) = A213080, F(2), ... occur in the context of asymptotic constants related to asymptotic products of factorials as well as of binomial and multinomial coefficients. Moreover, the sequence (F(k))_{k >= 1} is strictly decreasing with limit 1. For example, for k >= 1 the asymptotic product Prod_{v >= 1} (k*v)! has the asymptotic constant F(k)*A^k*(2*Pi)^(1/4), where A = A074962 denotes the Glaisher-Kinkelin constant. Let gamma = A001620 be Euler's constant and Gamma(x) be the gamma function. %C A377024 For k >= 1, the constants F(k) can be computed by an explicit formula and a divergent series expansion, as follows. We have log(F(k)) = (1/(12*k))*(1-log(k)) + (k/4)*log(2*Pi) - ((k^2+1)/k)*log(A) - Sum_{v=1..k-1} (v/k)*log(Gamma(v/k)) = gamma/(12*k) - t*zeta(3)/(360*k^3) with some t in (0,1), respectively. %C A377024 It follows that log(F(2)) = 1/24 + log(2*Pi)/4 + (5/24)*log(2) - (5/2)*log(A) = gamma/24 - t*zeta(3)/2880 with some t in (0,1), and so F(2) lies in the interval (1.023914..., 1.024342...) (see Kellner 2009 and 2024). %H A377024 Bernd C. Kellner, <a href="/A377024/b377024.txt">Table of n, a(n) for n = 1..10000</a> %H A377024 Bernd C. Kellner, <a href="https://doi.org/10.1515/INTEG.2009.009">On asymptotic constants related to products of Bernoulli numbers and factorials</a>, Integers 9 (2009), Article #A08, 83-106; <a href="https://www.emis.de/journals/INTEGERS/papers/j8/j8.Abstract.html">alternative link</a>; arXiv:<a href="https://arxiv.org/abs/math/0604505">0604505</a> [math.NT], 2006. %H A377024 Bernd C. Kellner, <a href="https://doi.org/10.5281/zenodo.12167556">Asymptotic products of binomial and multinomial coefficients revisited</a>, Integers 24 (2024), Article #A59, 10 pp.; arXiv:<a href="https://arxiv.org/abs/2312.11369">2312.11369</a> [math.CO], 2023. %F A377024 Equals exp(1/24)*(2*Pi)^(1/4)*2^(5/24)/A^(5/2) where A = A074962. %F A377024 Equals exp(-1/6+(5/2)*zeta'(-1))*(2*Pi)^(1/4)*2^(5/24). %e A377024 1.02393741163711840157795078258621780080376098043644005129469909513476924124007... %p A377024 exp(-1/6+5/2*Zeta(1, -1))*(2*Pi)^(1/4)*2^(5/24); evalf(%, 100); %t A377024 RealDigits[Exp[1/24] (2 Pi)^(1/4) 2^(5/24) / Glaisher^(5/2), 10, 100][[1]] %o A377024 (Sage) %o A377024 import mpmath %o A377024 mpmath.mp.pretty = True; mpmath.mp.dps = 100 %o A377024 mpmath.exp(-1/6+5/2*mpmath.zeta(-1, 1, 1))*(2*pi)^(1/4)*2^(5/24) %o A377024 (PARI) %o A377024 default(realprecision, 100); %o A377024 exp(-1/6+5/2*zeta'(-1))*(2*Pi)^(1/4)*2^(5/24) %Y A377024 Cf. A001620, A002117, A074962, A213080, A377023. %K A377024 nonn,cons %O A377024 1,3 %A A377024 _Bernd C. Kellner_, Oct 13 2024