This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A377025 #14 Oct 16 2024 20:18:36 %S A377025 4,8,9,16,25,27,36,49,81,100,121,125,144,169,196,216,225,256,289,324, %T A377025 343,361,400,441,484,512,529,576,625,676,784,841,900,961,1000,1024, %U A377025 1089,1156,1225,1296,1331,1369,1444,1521,1600,1681,1728,1764,1849,1936,2025 %N A377025 Squares and cubes that are not 6th powers. %C A377025 Squares and cubes that cannot be written as both a square and a cube. %C A377025 {A002760}\{A001014}. %C A377025 A125643 minus the repeated terms. %t A377025 lim=2025;Select[Union[Range[Floor[lim^(1/2)]]^2,Range[Floor[lim^(1/3)]]^3],!IntegerQ[#^(1/6)]&] (* _James C. McMahon_, Oct 16 2024 *) %o A377025 (Python) %o A377025 from math import isqrt %o A377025 from sympy import integer_nthroot %o A377025 def A377025(n): %o A377025 def bisection(f,kmin=0,kmax=1): %o A377025 while f(kmax) > kmax: kmax <<= 1 %o A377025 while kmax-kmin > 1: %o A377025 kmid = kmax+kmin>>1 %o A377025 if f(kmid) <= kmid: %o A377025 kmax = kmid %o A377025 else: %o A377025 kmin = kmid %o A377025 return kmax %o A377025 def f(x): return n+x+(integer_nthroot(x,6)[0]<<1)-integer_nthroot(x,3)[0]-isqrt(x) %o A377025 return bisection(f,n,n) %Y A377025 Cf. A002760, A125643, A001014. %K A377025 nonn,easy %O A377025 1,1 %A A377025 _Chai Wah Wu_, Oct 13 2024