A377033 Array read by antidiagonals downward where A(n,k) is the n-th term of the k-th differences of the composite numbers (A002808).
4, 6, 2, 8, 2, 0, 9, 1, -1, -1, 10, 1, 0, 1, 2, 12, 2, 1, 1, 0, -2, 14, 2, 0, -1, -2, -2, 0, 15, 1, -1, -1, 0, 2, 4, 4, 16, 1, 0, 1, 2, 2, 0, -4, -8, 18, 2, 1, 1, 0, -2, -4, -4, 0, 8, 20, 2, 0, -1, -2, -2, 0, 4, 8, 8, 0, 21, 1, -1, -1, 0, 2, 4, 4, 0, -8, -16, -16
Offset: 0
Examples
Array begins: n=1: n=2: n=3: n=4: n=5: n=6: n=7: n=8: n=9: ---------------------------------------------------------- k=0: 4 6 8 9 10 12 14 15 16 k=1: 2 2 1 1 2 2 1 1 2 k=2: 0 -1 0 1 0 -1 0 1 0 k=3: -1 1 1 -1 -1 1 1 -1 -1 k=4: 2 0 -2 0 2 0 -2 0 2 k=5: -2 -2 2 2 -2 -2 2 2 -2 k=6: 0 4 0 -4 0 4 0 -4 -1 k=7: 4 -4 -4 4 4 -4 -4 3 10 k=8: -8 0 8 0 -8 0 7 7 -29 k=9: 8 8 -8 -8 8 7 0 -36 63 Triangle begins: 4 6 2 8 2 0 9 1 -1 -1 10 1 0 1 2 12 2 1 1 0 -2 14 2 0 -1 -2 -2 0 15 1 -1 -1 0 2 4 4 16 1 0 1 2 2 0 -4 -8 18 2 1 1 0 -2 -4 -4 0 8 20 2 0 -1 -2 -2 0 4 8 8 0 21 1 -1 -1 0 2 4 4 0 -8 -16 -16
Crossrefs
Programs
-
Mathematica
nn=9; t=Table[Take[Differences[NestList[NestWhile[#+1&, #+1,PrimeQ]&,4,2*nn],k],nn],{k,0,nn}]
Formula
A(i,j) = Sum_{k=0..j} (-1)^(j-k) binomial(j,k) A002808(i+k).
Comments