A377036 First term of the n-th differences of the composite numbers. Inverse zero-based binomial transform of A002808.
4, 2, 0, -1, 2, -2, 0, 4, -8, 8, 0, -16, 32, -32, -1, 78, -233, 687, -2363, 8160, -25670, 72352, -184451, 430937, -933087, 1888690, -3597221, 6479696, -11086920, 18096128, -28307626, 42644791, -62031001, 86466285, -110902034, 110907489, -52325, -483682930
Offset: 0
Keywords
Crossrefs
The version for prime instead of composite is A007442.
For noncomposite numbers we have A030016.
This is the first column (n=1) of A377033.
For prime-power instead of composite we have A377054.
Programs
-
Mathematica
q=Select[Range[100],CompositeQ]; t=Table[Sum[(-1)^(j-k)*Binomial[j,k]*q[[1+k]],{k,0,j}],{j,0,Length[q]-1}]
Formula
The inverse zero-based binomial transform of a sequence (q(0), q(1), ..., q(m)) is the sequence p given by:
p(j) = sum_{k=0..j} (-1)^(j-k) binomial(j,k) q(k)