cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377038 Array read by antidiagonals downward where A(n,k) is the n-th term of the k-th differences of the squarefree numbers.

This page as a plain text file.
%I A377038 #7 Oct 19 2024 08:31:56
%S A377038 1,2,1,3,1,0,5,2,1,1,6,1,-1,-2,-3,7,1,0,1,3,6,10,3,2,2,1,-2,-8,11,1,
%T A377038 -2,-4,-6,-7,-5,3,13,2,1,3,7,13,20,25,22,14,1,-1,-2,-5,-12,-25,-45,
%U A377038 -70,-92,15,1,0,1,3,8,20,45,90,160,252,17,2,1,1,0,-3,-11,-31,-76,-166,-326,-578
%N A377038 Array read by antidiagonals downward where A(n,k) is the n-th term of the k-th differences of the squarefree numbers.
%C A377038 Row n is the k-th differences of A005117 = the squarefree numbers.
%F A377038 A(i,j) = sum_{k=0..j} (-1)^(j-k) binomial(j,k) A005117(i+k).
%e A377038 Array form:
%e A377038         n=1:  n=2:  n=3:  n=4:  n=5:  n=6:  n=7:  n=8:  n=9:
%e A377038   ----------------------------------------------------------
%e A377038   k=0:   1     2     3     5     6     7    10    11    13
%e A377038   k=1:   1     1     2     1     1     3     1     2     1
%e A377038   k=2:   0     1    -1     0     2    -2     1    -1     0
%e A377038   k=3:   1    -2     1     2    -4     3    -2     1     1
%e A377038   k=4:  -3     3     1    -6     7    -5     3     0    -2
%e A377038   k=5:   6    -2    -7    13   -12     8    -3    -2     3
%e A377038   k=6:  -8    -5    20   -25    20   -11     1     5    -5
%e A377038   k=7:   3    25   -45    45   -31    12     4   -10    10
%e A377038   k=8:  22   -70    90   -76    43    -8   -14    20   -19
%e A377038   k=9: -92   160  -166   119   -51    -6    34   -39    28
%e A377038 Triangle form:
%e A377038    1
%e A377038    2   1
%e A377038    3   1   0
%e A377038    5   2   1   1
%e A377038    6   1  -1  -2  -3
%e A377038    7   1   0   1   3   6
%e A377038   10   3   2   2   1  -2  -8
%e A377038   11   1  -2  -4  -6  -7  -5   3
%e A377038   13   2   1   3   7  13  20  25  22
%e A377038   14   1  -1  -2  -5 -12 -25 -45 -70 -92
%e A377038   15   1   0   1   3   8  20  45  90 160 252
%t A377038 nn=9;
%t A377038 t=Table[Take[Differences[NestList[NestWhile[#+1&,#+1,!SquareFreeQ[#]&]&,1,2*nn],k],nn],{k,0,nn}]
%t A377038 Table[t[[j,i-j+1]],{i,nn},{j,i}]
%Y A377038 Row k=0 is A005117.
%Y A377038 Row k=1 is A076259.
%Y A377038 Row k=2 is A376590.
%Y A377038 The version for primes is A095195, noncomposites A376682, composites A377033.
%Y A377038 A version for partitions is A175804, cf. A053445, A281425, A320590.
%Y A377038 Triangle row-sums are A377039, absolute version A377040.
%Y A377038 Column n = 1 is A377041, for primes A007442 or A030016.
%Y A377038 First position of 0 in each row is A377042.
%Y A377038 For nonsquarefree instead of squarefree numbers we have A377046.
%Y A377038 For prime-powers instead of squarefree numbers we have A377051.
%Y A377038 A000040 lists the primes, differences A001223, seconds A036263.
%Y A377038 A005117 lists the squarefree numbers, complement A013929 (differences A078147).
%Y A377038 A073576 counts integer partitions into squarefree numbers, factorizations A050320.
%Y A377038 Cf. A007674, A053797, A053806, A061398, A072284, A075526, A112925, A112926, A120992, A373198, A376311, A376591, A376592.
%K A377038 sign,tabl
%O A377038 0,2
%A A377038 _Gus Wiseman_, Oct 18 2024