A377044 The n-th perfect-power A001597(n) minus the n-th prime-power A246655(n).
-1, 1, 4, 4, 9, 17, 18, 21, 23, 33, 47, 62, 77, 96, 98, 99, 113, 137, 159, 175, 182, 196, 207, 236, 265, 282, 297, 333, 370, 411, 433, 448, 493, 536, 579, 628, 681, 734, 791, 848, 879, 899, 962, 1028, 1094, 1159, 1192, 1220, 1293, 1364, 1437, 1514, 1559, 1591
Offset: 1
Keywords
Crossrefs
Including 1 with the prime-powers gives A377043.
A000015 gives the least prime-power >= n.
A025475 lists numbers that are both a perfect-power and a prime-power.
A031218 gives the greatest prime-power <= n.
A080101 counts prime-powers between primes (exclusive).
A106543 lists numbers that are neither a perfect-power nor a prime-power.
A131605 lists perfect-powers that are not prime-powers.
Programs
-
Mathematica
perpowQ[n_]:=n==1||GCD@@FactorInteger[n][[All,2]]>1; per=Select[Range[1000],perpowQ]; per-NestList[NestWhile[#+1&, #+1,!PrimePowerQ[#]&]&,2,Length[per]-1]
-
Python
from sympy import mobius, primepi, integer_nthroot def A377044(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return int(n-1+x+sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length()))) def g(x): return int(n+x-sum(primepi(integer_nthroot(x,k)[0]) for k in range(1,x.bit_length()))) return bisection(f,n,n)-bisection(g,n,n) # Chai Wah Wu, Oct 27 2024
Comments