cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377051 Array read by antidiagonals downward where A(n,k) is the n-th term of the k-th differences of the powers of primes.

This page as a plain text file.
%I A377051 #8 Oct 22 2024 08:00:16
%S A377051 1,2,1,3,1,0,4,1,0,0,5,1,0,0,0,7,2,1,1,1,1,8,1,-1,-2,-3,-4,-5,9,1,0,1,
%T A377051 3,6,10,15,11,2,1,1,0,-3,-9,-19,-34,13,2,0,-1,-2,-2,1,10,29,63,16,3,1,
%U A377051 1,2,4,6,5,-5,-34,-97,17,1,-2,-3,-4,-6,-10,-16,-21,-16,18,115
%N A377051 Array read by antidiagonals downward where A(n,k) is the n-th term of the k-th differences of the powers of primes.
%C A377051 Row k of the array is the k-th differences of A000961.
%F A377051 A(i,j) = Sum_{k=0..j} (-1)^(j-k)*binomial(j,k)*A000961(i+k).
%e A377051 Array form:
%e A377051         n=1:  n=2:  n=3:  n=4:  n=5:  n=6:  n=7:  n=8:  n=9:
%e A377051   ----------------------------------------------------------
%e A377051   k=0:   1     2     3     4     5     7     8     9    11
%e A377051   k=1:   1     1     1     1     2     1     1     2     2
%e A377051   k=2:   0     0     0     1    -1     0     1     0     1
%e A377051   k=3:   0     0     1    -2     1     1    -1     1    -3
%e A377051   k=4:   0     1    -3     3     0    -2     2    -4     6
%e A377051   k=5:   1    -4     6    -3    -2     4    -6    10    -8
%e A377051   k=6:  -5    10    -9     1     6   -10    16   -18     5
%e A377051   k=7:  15   -19    10     5   -16    26   -34    23     9
%e A377051   k=8: -34    29    -5   -21    42   -60    57   -14   -42
%e A377051   k=9:  63   -34   -16    63  -102   117   -71   -28   104
%e A377051 Triangle form:
%e A377051     1
%e A377051     2    1
%e A377051     3    1    0
%e A377051     4    1    0    0
%e A377051     5    1    0    0    0
%e A377051     7    2    1    1    1    1
%e A377051     8    1   -1   -2   -3   -4   -5
%e A377051     9    1    0    1    3    6   10   15
%e A377051    11    2    1    1    0   -3   -9  -19  -34
%e A377051    13    2    0   -1   -2   -2    1   10   29   63
%e A377051    16    3    1    1    2    4    6    5   -5  -34  -97
%t A377051 nn=12;
%t A377051 t=Table[Take[Differences[NestList[NestWhile[#+1&, #+1,!PrimePowerQ[#]&]&,1,2*nn],k],nn],{k,0,nn}]
%t A377051 Table[t[[j,i-j+1]],{i,nn},{j,i}]
%Y A377051 Row k=0 is A000961, exclusive A246655.
%Y A377051 Row k=1 is A057820.
%Y A377051 Row k=2 is A376596.
%Y A377051 The version for primes is A095195, noncomposites A376682, composites A377033.
%Y A377051 A version for partitions is A175804, cf. A053445, A281425, A320590.
%Y A377051 For squarefree numbers we have A377038, nonsquarefree A377046.
%Y A377051 Triangle row-sums are A377052, absolute version A377053.
%Y A377051 Column n = 1 is A377054, for primes A007442 or A030016.
%Y A377051 First position of 0 in each row is A377055.
%Y A377051 A000040 lists the primes, differences A001223, seconds A036263.
%Y A377051 A023893 and A023894 count integer partitions into prime-powers, factorizations A000688.
%Y A377051 Cf. A025475, A053707, A093555, A174965, A361102, A376340, A376598, A376653.
%K A377051 sign,tabl
%O A377051 0,2
%A A377051 _Gus Wiseman_, Oct 20 2024