A377054 First term of the n-th differences of the powers of primes. Inverse zero-based binomial transform of A000961.
1, 1, 0, 0, 0, 1, -5, 15, -34, 63, -97, 115, -54, -251, 1184, -3536, 8736, -18993, 37009, -64545, 98442, -121393, 82008, 147432, -860818, 2710023, -7110594, 17077281, -38873146, 85085287, -179965647, 367885014, -725051280, 1372311999, -2481473550, 4257624252
Offset: 0
Keywords
Examples
The sixth differences of A000961 begin: -5, 10, -9, 1, 6, -10, 16, -18, ..., so a(6) = -5.
Crossrefs
Programs
-
Mathematica
q=Select[Range[100],#==1||PrimePowerQ[#]&]; Table[Sum[(-1)^(j-k)*Binomial[j,k]*q[[1+k]],{k,0,j}],{j,0,Length[q]/2}]
Formula
The inverse zero-based binomial transform of a sequence (q(0), q(1), q(2), ...) is the sequence p given by:
p(j) = sum_{k=0..j} (-1)^(j-k)*binomial(j,k)*q(k)