cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377058 Triangle of generalized Stirling numbers of the lower level of the hierarchy (case m=2).

This page as a plain text file.
%I A377058 #11 Oct 17 2024 18:50:43
%S A377058 1,5,1,32,11,1,248,113,18,1,2248,1230,263,26,1,23272,14534,3765,505,
%T A377058 35,1,270400,186992,55654,9115,865,45,1,3479744,2612000,865186,163779,
%U A377058 19110,1372,56,1,49079936,39434448,14235388,3013164,408569,36288,2058,68,1
%N A377058 Triangle of generalized Stirling numbers of the lower level of the hierarchy (case m=2).
%C A377058 These numbers are a subset of the generalized Stirling numbers introduced in A370518. Therefore, we assume them to be numbers of the lower level of hierarchy with respect to A370518.
%H A377058 Igor Victorovich Statsenko, <a href="https://aeterna-ufa.ru/sbornik/IN-2024-10-1.pdf#page=19">Relationships of "P"-generalized Stirling numbers of the first kind with other generalized Stirling numbers</a>, Innovation science No 10-1, State Ufa, Aeterna Publishing House, 2024, pp. 19-22. In Russian.
%F A377058 T(m, n, k) = Sum_{i=0..n} Sum_{j=i..n} Stirling1(n-j, k)*binomial(n+m, i)*binomial(n, j)* binomial(j, i)*i!*m^(j-i), for m = 2.
%e A377058 [0]           1;
%e A377058 [1]           5,          1;
%e A377058 [2]          32,         11,         1;
%e A377058 [3]         248,        113,        18,        1;
%e A377058 [4]        2248,       1230,       263,       26,       1;
%e A377058 [5]       23272,      14534,      3765,      505,      35,      1;
%e A377058 [6]      270400,     186992,     55654,     9115,     865,     45,     1;
%e A377058 [7]     3479744,    2612000,    865186,   163779,   19110,   1372,    56,    1;
%e A377058 [8]    49079936,   39434448,  14235388,  3013164,  408569,  36288,  2058,   68,    1;
%p A377058 T := (m,n,k) -> add(add(Stirling1(n-j,k)*binomial(n+m,i)*binomial(n,j)*binomial(j,i)*i!*m^(j-i), j=i..n), i=0..n): m:=2: seq(seq(T(m,n,k), k=0..n), n=0..10);
%Y A377058 A361649 (row sums).
%Y A377058 Triangle for m=0: A130534.
%Y A377058 Triangle for m=1: A376863.
%K A377058 nonn
%O A377058 0,2
%A A377058 _Igor Victorovich Statsenko_, Oct 14 2024