This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A377065 #8 Oct 15 2024 15:47:02 %S A377065 1,1,2,6,30,166,981,5937,36646,229350,1451757,9274057,59699729, %T A377065 386798777,2520034050,16497343046,108454221206,715629888822, %U A377065 4737625385061,31456633327905,209418369288865,1397521222483385,9346484009527370,62632803958053870,420481623373564025 %N A377065 Number of 3 X n 0..2 matrices with row sums n and column sums 3 up to permutations of rows. %C A377065 Also, the number of 3 X n {-1,0,1} matrices with all rows and columns summing to zero up to permutations of rows. %H A377065 Andrew Howroyd, <a href="/A377065/b377065.txt">Table of n, a(n) for n = 0..500</a> %F A377065 a(n) = (A172634(n) - 1)/6 + 1. %F A377065 a(n) = (5 + Sum_{i=0..n} Sum_{j=0..i} (-1)^(n-i)*binomial(n, i)*binomial(i, j)^3)/6. %e A377065 The a(2) = 2 matrices are: %e A377065 [1 1] [2 0] %e A377065 [1 1] [0 2] %e A377065 [1 1] [1 1] %e A377065 The a(3) = 6 matrices are: %e A377065 [1 1 1] [2 1 0] [2 0 1] [1 2 0] [2 1 0] [2 0 1] %e A377065 [1 1 1] [0 1 2] [0 2 0] [1 0 2] [1 0 2] [1 2 0] %e A377065 [1 1 1] [1 1 1] [1 1 1] [1 1 1] [0 2 1] [0 1 2] %o A377065 (PARI) a(n)={(5+sum(i=0, n, sum(j=0, i, (-1)^(n-i)*binomial(n, i)*binomial(i, j)^3)))/6} %Y A377065 Row n=3 of A377063. %Y A377065 Cf. A172634, A377066, A377067. %K A377065 nonn %O A377065 0,3 %A A377065 _Andrew Howroyd_, Oct 15 2024