A377070 Irregular triangle where row n lists m such that rad(m) | n and bigomega(m) = bigomega(n), where rad = A007947 and bigomega = A001222.
1, 2, 3, 4, 5, 4, 6, 9, 7, 8, 9, 4, 10, 25, 11, 8, 12, 18, 27, 13, 4, 14, 49, 9, 15, 25, 16, 17, 8, 12, 18, 27, 19, 8, 20, 50, 125, 9, 21, 49, 4, 22, 121, 23, 16, 24, 36, 54, 81, 25, 4, 26, 169, 27, 8, 28, 98, 343, 29, 8, 12, 18, 20, 27, 30, 45, 50, 75, 125, 31
Offset: 1
Examples
Triangle begins: n row n of this sequence: ------------------------------------------- 1: {1} 2: {2} 3: {3} 4: {4} 5: {5} 6: {4, 6, 9} 7: {7} 8: {8} 9: {9} 10: {4, 10, 25} ... (Select rows appear below) 12: {8, 12, 18, 27} 14: {4, 14, 49} 15: {9, 15, 25} 18: {8, 12, 18, 27} 20: {8, 20, 50, 125} 24: {16, 24, 36, 54, 81} 30: {8, 12, 18, 20, 27, 30, 45, 50, 75, 125} 42: {8, 12, 18, 27, 28, 42, 63, 98, 147, 343} 60: {16, 24, 36, 40, 54, 60, 81, 90, 100, 135, 150, 225, 250, 375, 625}. . Diagrams of the rank omega(n)-1 simplexes created by row n of this sequence for select n, ordering k in row n by prime decomposition. The number k = n appears in brackets: Rank 3: n = 30: n = 42: 8 8 / \ / \ 12 -- 20 12 -- 28 / \ / \ / \ / \ 18 --[30]-- 50 18 --[42]-- 98 / \ / \ / \ / \ / \ / \ 27 -- 45 -- 75 -- 125 27 -- 63 --147 -- 343 . n = 60: 16 / \ 24 -- 40 / \ / \ 36 --[60]-- 50 / \ / \ / \ 54 -- 90 -- 75 --125 / \ / \ / \ / \ 81 --150 --135 --375 --625 . Rank 4: n = 210: 16 40 24 56 100 60 140 36 84 196 250 150 350 90 [210] 490 54 126 294 686 625 375 875 225 525 1225 135 315 735 1715 81 189 441 1029 2401
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..12021, (rows n = 1..1500, flattened)
- Michael De Vlieger, Diagrams of select a(n) illustrating rank omega(n)-1 simplexes formed by the arrangement of terms in row n by prime power decomposition.
- Michael De Vlieger, Log log scatterplot of a(n), rows n = 1..65536 (1278755 terms).
Programs
-
Mathematica
rad[x_] := rad[x] = Times @@ FactorInteger[x][[All, 1]]; Table[k = PrimeOmega[n]; Select[Range[n^PrimeNu[n]], Divisible[n, rad[#]] && PrimeOmega[#] == k &], {n, 30}]
Comments