cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377077 G.f.: Sum_{k>=0} x^(7*k^2) / Product_{j=1..7*k-1} (1 - x^j).

This page as a plain text file.
%I A377077 #8 Oct 15 2024 05:11:40
%S A377077 0,0,0,0,0,0,0,1,1,2,3,5,7,11,14,20,26,35,44,58,71,90,110,136,163,199,
%T A377077 235,282,332,392,456,535,617,716,822,946,1079,1236,1402,1596,1806,
%U A377077 2046,2306,2606,2929,3299,3704,4163,4667,5241,5870,6585,7378,8273,9268,10397
%N A377077 G.f.: Sum_{k>=0} x^(7*k^2) / Product_{j=1..7*k-1} (1 - x^j).
%H A377077 Vaclav Kotesovec, <a href="/A377077/b377077.txt">Table of n, a(n) for n = 0..10000</a>
%F A377077 a(n) ~ r^2 * (7*log(r)^2 + polylog(2, r^2))^(1/4) * exp(2*sqrt((7*log(r)^2 + polylog(2, r^2))*n)) / (2*sqrt(7*Pi*(7 - 5*r^2)) * n^(3/4)), where r = 0.839833147032421662... is the positive real root of the equation r^2 = 1 - r^7.
%t A377077 nmax = 100; CoefficientList[Series[Sum[x^(7*k^2)/Product[1-x^j, {j, 1, 7*k-1}], {k, 1, Sqrt[nmax/7]}], {x, 0, nmax}], x]
%Y A377077 Column 7 of A350889.
%K A377077 nonn
%O A377077 0,10
%A A377077 _Vaclav Kotesovec_, Oct 15 2024