cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377081 G.f.: Sum_{k>=1} x^(3*k^2) * Product_{j=1..k} (1 + x^j).

Original entry on oeis.org

0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 3, 3, 3, 3, 3, 3, 2
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 15 2024

Keywords

Comments

In general, if m > 0 and g.f. = Sum_{k>=1} x^(m*k^2) * Product_{j=1..k} (1 + x^j), then a(n) ~ (1+r) * exp(sqrt((4*m*(2*m+1)*log(r)^2 + 4*polylog(2, 1/(1+r)) - Pi^2/3)*n)) / (2*sqrt((r + 2*m*(1+r))*n)), where r is the smallest positive real root of the equation r^(2*m)*(1+r) = 1.

Crossrefs

Cf. A306734 (m=1), A377080 (m=2).

Programs

  • Mathematica
    nmax = 200; CoefficientList[Series[Sum[x^(3*k^2)*Product[1+x^j, {j, 1, k}], {k, 1, Sqrt[nmax/3]}], {x, 0, nmax}], x]

Formula

a(n) ~ (1+r) * exp(sqrt((84*log(r)^2 + 4*polylog(2, 1/(1+r)) - Pi^2/3)*n)) / (2*sqrt((6 + 7*r)*n)), where r = A230154 = 0.898653712628699293260875722... is the real root of the equation r^6*(1+r) = 1.