This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A377104 #10 Jul 23 2025 16:06:16 %S A377104 1,1,-1,4,-26,240,-2850,41160,-703640,13889400,-310575720,7752286080, %T A377104 -213867376800,6462828372000,-212276818353600,7528584190327200, %U A377104 -286677285603508800,11667274390189017600,-505448781205934966400,23223347244920039817600,-1127925105189437053699200,57737023232409594718444800 %N A377104 E.g.f. A(x) satisfies [x^n] A(x)^A003057(n) = 0 for n >= 2, where A003057 is "n appears n-1 times.". %H A377104 Paul D. Hanna, <a href="/A377104/b377104.txt">Table of n, a(n) for n = 0..601</a> %e A377104 E.g.f.: A(x) = 1 + x - x^2/2! + 4*x^3/3! - 26*x^4/4! + 240*x^5/5! - 2850*x^6/6! + 41160*x^7/7! - 703640*x^8/8! + 13889400*x^9/9! - 310575720*x^10/10! + 7752286080*x^11/11! - 213867376800*x^12/12! + 6462828372000*x^13/13! - 212276818353600*x^14/14! + 7528584190327200*x^15/15! + ... %e A377104 RELATED TABLE. %e A377104 The table of coefficients of x^k/k! in A(x)^n begins %e A377104 n\k 0 1 2 3 4 5 6 7 8 9 10 %e A377104 1: [1, 1, -1, 4, -26, 240, -2850, 41160, -703640, 13889400, -310575720, ...]; %e A377104 2: [1, 2, 0, 2, -14, 140, -1720, 25060, -434280, 8662080, -194885040, ...]; %e A377104 3: [1, 3, 3, 0, 0, 30, -480, 7560, -147000, 3136560, -73364760, ...]; %e A377104 4: [1, 4, 8, 4, 4, 0, 0, 0, -21560, 618240, -16205280, ...]; %e A377104 5: [1, 5, 15, 20, 10, 20, 50, -1400, 0, 0, 0, 0, -1684359600, ...]; %e A377104 6: [1, 6, 24, 54, 54, 60, 120, -1260, -11760, -31920, 2000880, -65585520, 0, 0, 0, 0, 0, 24502922005161600, ...]; %e A377104 ... %e A377104 in which there are (n-1) contiguous zeros in row n starting at k = (n-1)*(n-2)/2 + 2 for n >= 2. %e A377104 Equivalently, [x^n] A(x)^A003057(n) = 0 for n >= 2, where %e A377104 A003057 = [2, 3, 3, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 6, 7, ...] (offset 2). %o A377104 (PARI) {A003057(n) = round( sqrt(2*(n-1)) ) + 1} %o A377104 {a(n) = my(V=[1,1,0],A); for(i=0,n, V = concat(V,0); A = Ser(V); m = #V-2; %o A377104 V[#V-1] = -polcoef(A^A003057(m), m)/A003057(m) ); n!*polcoef(A,n)} %o A377104 for(n=1,30,print1(a(n),", ")) %Y A377104 Cf. A003057. %K A377104 sign %O A377104 0,4 %A A377104 _Paul D. Hanna_, Oct 31 2024