cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377107 G.f.: Sum_{k>=1} x^(7*k-1) * Product_{j=1..k-1} (1-x^(6*k+j-1))/(1-x^j).

This page as a plain text file.
%I A377107 #7 Oct 18 2024 03:54:09
%S A377107 0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2,3,3,4,3,4,5,6,7,9,10,12,
%T A377107 14,17,19,23,26,30,33,38,43,50,56,65,74,86,97,113,128,148,167,191,215,
%U A377107 246,276,314,354,402,452,513,577,654,735,830,932,1052,1178
%N A377107 G.f.: Sum_{k>=1} x^(7*k-1) * Product_{j=1..k-1} (1-x^(6*k+j-1))/(1-x^j).
%H A377107 Vaclav Kotesovec, <a href="/A377107/b377107.txt">Table of n, a(n) for n = 0..10000</a>
%F A377107 a(n) ~ 5 * Pi^6 * exp(Pi*sqrt(2*n/3)) / (2 * 3^(3/2) * n^4).
%t A377107 nmax = 100; CoefficientList[Series[Sum[x^(7*k-1)*Product[(1-x^(6*k+j-1))/(1-x^j), {j, 1, k-1}], {k, 1, nmax/7+1}], {x, 0, nmax}], x]
%t A377107 nmax = 100; p=x^5; s=x^5; Do[p=Normal[Series[p*x^7*(1-x^(7*k-1))*(1-x^(7*k))*(1-x^(7*k+1))*(1-x^(7*k+2))*(1-x^(7*k+3))*(1-x^(7*k+4))*(1-x^(7*k+5))/((1-x^(6*k+5))*(1-x^(6*k+4))*(1-x^(6*k+3))*(1-x^(6*k+2))*(1-x^(6*k+1))*(1-x^(6*k))*(1-x^k)), {x, 0, nmax}]]; s+=p;, {k, 1, nmax/7+1}]; Join[{0}, Take[CoefficientList[s, x], nmax]]
%Y A377107 Column 6 of A350879.
%K A377107 nonn
%O A377107 0,21
%A A377107 _Vaclav Kotesovec_, Oct 16 2024