A377110 a(n) = coefficient of sqrt(2) in the expansion of (2 + sqrt(2) + sqrt(3))^n.
0, 1, 4, 23, 120, 629, 3260, 16843, 86832, 447241, 2302516, 11851487, 60995880, 313912637, 1615504748, 8313878227, 42785563488, 220186165393, 1133137017700, 5831424517415, 30010056528600, 154439694647429, 794787521046812, 4090186754982235, 21049182488180880
Offset: 0
Examples
(2 + sqrt(2) + sqrt(3))^3 = 9 + 4*sqrt(2) + 4*sqrt(3) + 2*sqrt(6), so a(3) = 4.
Links
- Index entries for linear recurrences with constant coefficients, signature (8,-14,-8,23).
Crossrefs
Cf. A377109.
Programs
-
Mathematica
(* Program 1 generates sequences A377109-A377112. *) tbl = Table[Expand[(2 + Sqrt[2] + Sqrt[3])^n], {n, 0, 24}]; u = MapApply[{#1/#2, #2} /. {1, #} -> {{1}, {#}} &, Map[({#1, #1 /. ^ -> 1} &), Map[(Apply[List, #1] &), tbl]]]; {s1,s2,s3,s4}=Transpose[(PadRight[#1,4]&)/@Last/@u][[1;;4]]; s2 (* Peter J. C. Moses, Oct 16 2024 *) (* Program 2 generates this sequence. *) LinearRecurrence[{8, -14, -8, 23}, {0, 1, 4, 23}, 25]
Formula
a(n) = 8*a(n-1) - 14*a(n-2) - 8*a(n-3) + 23*a(n-4), with a(0)=0, a(1)=1, a(3)=4, a(4)=23.
G.f.: x*(-1 + 4*x - 5*x^2)/(-1 + 8*x - 14*x^2 - 8*x^3 + 23*x^4).
a(n) = ((2 + sqrt(2) + sqrt(3))^n - (2 - sqrt(2) - sqrt(3))^n + (2 + sqrt(2) - sqrt(3))^n - (2 - sqrt(2) + sqrt(3))^n) / 2^(5/2). - Vaclav Kotesovec, Oct 21 2024
Comments