This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A377111 #20 Aug 09 2025 04:00:01 %S A377111 0,1,4,21,104,529,2700,13845,71120,365697,1881236,9679605,49809720, %T A377111 256324433,1319090972,6788338869,34934465440,179781713537, %U A377111 925203573540,4761340669269,24503114321416,126099496024593,648941324534188,3339623572751061,17186585699725680 %N A377111 a(n) = coefficient of sqrt(3) in the expansion of (2 + sqrt(2) + sqrt(3))^n. %C A377111 Conjecture: every prime divides a(n) for infinitely many n, and if K(p) = (k(1), k(2),...) is the maximal subsequence of indices n such that p divides a(n), then the difference sequence of K(p) is eventually periodic; indeed, K(p) is purely periodic for the first 7 primes, with respective period lengths 6,8,7,28,16,14,50: %C A377111 p = 2: (3, 3, 1, 2, 2, 1) %C A377111 p = 3: (6, 1, 1, 3, 1, 4, 2, 6) %C A377111 p = 5: (32, 21, 20, 10, 20, 9, 8) %C A377111 p = 7: (18, 18, 8, 10, 18, 18, 11, 7, 18, 18, 1, 3, 13, 1, 5, 5, 8, 18, 14, 4, 18, 13, 5, 2, 16, 7, 9, 2) %C A377111 p = 11: (16, 16, 16, 16, 12, 4, 1, 15, 7, 8, 1, 4, 12, 16, 9, 7) %C A377111 p = 13: (24, 18, 6, 24, 12, 1, 11, 24, 5, 1, 17, 1, 7, 17) %C A377111 p = 17: (15, 30, 30, 8, 4, 11, 7, 30, 30, 9, 7, 14, 30, 5, 9, 16, 6, 24, 30, 30, 3, 27, 30, 30, 19, 11, 30, 4, 21, 2, 3, 22, 8, 7, 23, 24, 6, 30, 30, 11, 10, 9, 26, 4, 30, 18, 12, 30, 30, 15). %C A377111 See A377109 for a guide to related sequences. %H A377111 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (8,-14,-8,23). %F A377111 a(n) = 8*a(n-1) - 14*a(n-2) - 8*a(n-3) + 23*a(n-4), with a(0)=0, a(1)=1, a(3)=4, a(4)=21. %F A377111 G.f.: x*(-1 + 4*x - 3*x^2)/(-1 + 8*x - 14*x^2 - 8*x^3 + 23*x^4). %F A377111 a(n) = ((2 - sqrt(2) + sqrt(3))^n + (2 + sqrt(2) + sqrt(3))^n - (2 - sqrt(2) - sqrt(3))^n - (2 + sqrt(2) - sqrt(3))^n) / (4*sqrt(3)). - _Vaclav Kotesovec_, Oct 21 2024 %e A377111 (2 + sqrt(2) + sqrt(3))^3 = 9 + 4*sqrt(2) + 4*sqrt(3) + 2*sqrt(6), so a(3) = 4. %t A377111 (* Program 1 generates sequences A377109-A377112. *) %t A377111 tbl = Table[Expand[(2 + Sqrt[2] + Sqrt[3])^n], {n, 0, 24}]; %t A377111 u = MapApply[{#1/#2, #2} /. {1, #} -> {{1}, {#}} &, %t A377111 Map[({#1, #1 /. _^_ -> 1} &), Map[(Apply[List, #1] &), tbl]]]; %t A377111 {s1,s2,s3,s4}=Transpose[(PadRight[#1,4]&)/@Last/@u][[1;;4]]; %t A377111 s3 (* _Peter J. C. Moses_, Oct 16 2024 *) %t A377111 (* Program 2 generates this sequence. *) %t A377111 LinearRecurrence[{8, -14, -8, 23}, {0, 1, 4, 21}, 25] %Y A377111 Cf. A377109. %K A377111 nonn,easy %O A377111 0,3 %A A377111 _Clark Kimberling_, Oct 20 2024