A377112 a(n) = coefficient of sqrt(6) in the expansion of (2 + sqrt(2) + sqrt(3))^n.
0, 0, 2, 12, 68, 360, 1878, 9716, 50120, 258192, 1329322, 6842396, 35215884, 181237368, 932711806, 4800019332, 24702255760, 127124540448, 654216959826, 3366774510892, 17326314208468, 89165799266952, 458870789205926, 2361470423992852, 12152751175719000
Offset: 0
Examples
(2 + sqrt(2) + sqrt(3))^3 = 9 + 4*sqrt(2) + 4*sqrt(3) + 2*sqrt(6), so a(3) = 2.
Links
- Index entries for linear recurrences with constant coefficients, signature (8,-14,-8,23).
Crossrefs
Cf. A377109.
Programs
-
Mathematica
(* Program 1 generates sequences A377109-A377112. *) tbl = Table[Expand[(2 + Sqrt[2] + Sqrt[3])^n], {n, 0, 24}]; u = MapApply[{#1/#2, #2} /. {1, #} -> {{1}, {#}} &, Map[({#1, #1 /. ^ -> 1} &), Map[(Apply[List, #1] &), tbl]]]; {s1,s2,s3,s4}=Transpose[(PadRight[#1,4]&)/@Last/@u][[1;;4]]; s4 (* Peter J. C. Moses, Oct 16 2024 *) (* Program 2 generates this sequence. *) LinearRecurrence[{8, -14, -8, 23}, {0, 0, 2, 12}, 25]
Formula
a(n) = 8*a(n-1) - 14*a(n-2) - 8*a(n-3) + 23*a(n-4), with a(0)=0, a(1)=0, a(3)=2, a(4)=12.
G.f.: 2*x^2*(-1 + 2*x)/(-1 + 8*x - 14*x^2 - 8*x^3 + 23*x^4).
Comments