A377116 a(n) = coefficient of sqrt(6) in the expansion of (3 + sqrt(2) + sqrt(3))^n.
0, 0, 2, 18, 128, 840, 5328, 33264, 206080, 1271808, 7833472, 48200064, 296423424, 1822459392, 11203152896, 68863546368, 423273267200, 2601614180352, 15990421856256, 98282063536128, 604069867552768, 3712780777586688, 22819757583302656, 140256346936639488
Offset: 0
Examples
(3 + sqrt(2) + sqrt(3))^3 = 14 + 6*sqrt(2) + 6*sqrt(3) + 2*sqrt(6), so a(3) = 2.
Links
- Index entries for linear recurrences with constant coefficients, signature (12,-44,48,8).
Programs
-
Mathematica
(* Program 1 generates sequences A377113-A377116. *) tbl = Table[Expand[(3 + Sqrt[2] + Sqrt[3])^n], {n, 0, 24}]; u = MapApply[{#1/#2, #2} /. {1, #} -> {{1}, {#}} &, Map[({#1, #1 /. ^ -> 1} &), Map[(Apply[List, #1] &), tbl]]]; {s1,s2,s3,s4}=Transpose[(PadRight[#1,4]&)/@Last/@u][[1;;4]]; s4 (* Peter J. C. Moses, Oct 16 2024 *) (* Program 2 generates this sequence. *) LinearRecurrence[{12, -44, 48, 8}, {0, 0, 2, 18}, 25]
Formula
a(n) = 12*a(n-1) - 44*a(n-2) + 48*a(n-3) + 8*a(n-4), with a(0)=0, a(1)=0, a(3)=2, a(4)=18.
G.f.: 2*x^2*(-1 + 3*x)/(-1 + 12*x - 44*x^2 + 48*x^3 + 8*x^4).
Comments