A377117 a(n) = coefficient of the term that is independent of 2^(1/3) and 2^(2/3) in the expansion of (2^(1/3) + 2^(2/3))^n.
1, 1, 4, 6, 24, 60, 180, 504, 1440, 4104, 11664, 33264, 94608, 269568, 767232, 2185056, 6220800, 17713728, 50435136, 143607168, 408893184, 1164253824, 3315002112, 9438882048, 26875535616, 76523304960, 217886505984, 620393043456, 1766458865664, 5029677296640
Offset: 0
Examples
((2^(1/3) + 2^(2/3)))^3 = 4 + 2 2^(1/3) + 2^(2/3), so a(3) = 4.
Links
- Index entries for linear recurrences with constant coefficients, signature (0,6,6).
Programs
-
Mathematica
(* Program 1 generates sequences A377117-A377119. *) tbl = Table[Expand[(2^(1/3) + 2^(2/3))^n], {n, 0, 24}]; Take[tbl, 6] u = MapApply[{#1/#2, #2} /. {1, #} -> {{1}, {#}} &, Map[({#1, #1 /. ^ -> 1} &), Map[(Apply[List, #1] &), tbl]]]; {s1, s2, s3} = Transpose[(PadRight[#1, 3] &) /@ Last /@ u][[1 ;; 3]]; s1 (* Peter J. C. Moses, Oct 16 2024 *) (* Program 2 generates (a(n)) for n>=1. *) LinearRecurrence[{0,6,6}, {1, 1, 4, 6, 24}, 15] (* Program 3 confirms the periodicity properties described in Comments. *) tbl = Table[Expand[(2^(1/3) + 2^(2/3))^n], {n, 0, 1000}]; u = MapApply[{#1/#2, #2} /. {1, #} -> {{1}, {#}} &, Map[({#1, #1 /. ^ -> 1} &), Map[(Apply[List, #1] &), tbl]]]; v = {s1, s2, s3} = Transpose[(PadRight[#1, 3] &) /@ Last /@ u][[1 ;; 3]]; Position[Partition[list, Length[#], 1], Flatten[{_, #, _}]] &[seqtofind]; period[seq_] := (If[Last[#1] == {} || Length[#1] == Length[seq] - 1, 0, Length[#1]] &)[NestWhileList[Rest, Rest[seq], #1 != Take[seq, Length[#1]] &, 1]]; periodicityReport[seq_] := ({Take[seq, Length[seq] - Length[#1]], period[#1], Take[#1, period[#1]]} &)[Take[seq, -Length[NestWhile[Rest[#1] &, seq, period[#1] == 0 &, 1, Length[seq]]]]]; seq = s1; Take[seq, 10] f[n_] := Flatten[Position[Mod[s1, Prime[n]], 0]]; d[n_] := Differences[f[n]]; Table[Take[f[n], 10], {n, 2, 4}] Table[Take[d[n], 10], {n, 2, 4}] Column[Table[{n, Prime[n], periodicityReport[d[Prime[n]]]}, {n, 1, 8}]] (* Peter J. C. Moses, Aug 07 2014, Oct 16 2024 *)
Formula
a(n) = 6*a(n-2) + 6*a(n-3) for n >= 5. [Corrected by Georg Fischer, Oct 29 2024]
G.f.: (-1 - x + 2 x^2 + 6 x^3 + 6 x^4)/(-1 + 6 x^2 + 6 x^3).
Comments