This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A377118 #11 Aug 09 2025 05:00:04 %S A377118 0,1,2,6,18,48,144,396,1152,3240,9288,26352,75168,213840,609120, %T A377118 1734048,4937760,14059008,40030848,113980608,324539136,924068736, %U A377118 2631118464,7491647232,21331123200,60736594176,172936622592,492406304256,1402039300608,3992057561088 %N A377118 a(n) = coefficient of 2^(1/3) in the expansion of (2^(1/3) + 2^(2/3))^n. %C A377118 Conjecture: every prime divides a(n) for infinitely many n, and if K(p) = (k(1), k(2),...) is the maximal subsequence of indices n such that p divides a(n), then the difference sequence of K(p) is eventually periodic; indeed, K(p) is purely periodic for the first 6 primes, with respective period lengths 1,5,4,17,1,13 and these periods: %C A377118 p = 2: (1) %C A377118 p = 3: (9, 4, 1, 2, 8) %C A377118 p = 5: (7, 6, 5, 22) %C A377118 p = 7: (60, 23, 5, 9, 16, 8, 42, 7, 19, 1, 2, 10, 31, 4, 11, 6, 34) %C A377118 p = 11: (30) %C A377118 p = 13: (119, 13, 9, 25, 15, 51, 45, 1, 2, 17, 41, 28, 54) %C A377118 See A377109 for a guide to related sequences. %H A377118 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (0,6,6). %F A377118 a(n) = 6*a(n-2) + 6*a(n-3) for n>=1, with a(0)=0, a(1)=1, a(3)=2. %F A377118 G.f.: x*(1 + 2*x)/(1 - 6*x^2 - 6*x^3). %e A377118 ((2^(1/3) + 2^(2/3)))^3 = 4 + 2*2^(1/3) + 2^(2/3), so a(3) = 2. %t A377118 (* Program 1 generates sequences A377117-A377119. *) %t A377118 tbl = Table[Expand[(2^(1/3) + 2^(2/3))^n], {n, 0, 30}]; %t A377118 u = MapApply[{#1/#2, #2} /. {1, #} -> {{1}, {#}} &, %t A377118 Map[({#1, #1 /. _^_ -> 1} &), Map[(Apply[List, #1] &), tbl]]]; %t A377118 {s1, s2, s3} = Transpose[(PadRight[#1, 3] &) /@ Last /@ u][[1 ;; 3]]; %t A377118 s2 (* _Peter J. C. Moses_, Oct 16 2024 *) %t A377118 (* Program 2 generates (a(n)) for n>=1. *) %t A377118 LinearRecurrence[{0,6,6}, {0,1,2}, 30] %Y A377118 Cf. A377109, A377117, A377119. %K A377118 nonn,easy %O A377118 0,3 %A A377118 _Clark Kimberling_, Oct 26 2024