This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A377133 #17 Nov 17 2024 07:41:16 %S A377133 1,2,4,3,6,9,4,8,12,16,5,10,15,20,25,6,12,18,24,30,36,7,14,21,28,35, %T A377133 42,50,8,16,24,32,40,48,60,72,9,18,27,36,45,56,70,84,98,10,20,30,40, %U A377133 50,64,80,96,112,128,11,22,33,44,55,72,90,108,126,144,162,12,24 %N A377133 Triangle read by rows: T(n,k) is the maximum volume of an integer-sided box that can be made from a piece of paper of size n X k by cutting away identical squares at each corner and folding up the sides, n >= 3, 3 <= k <= n. %C A377133 For a sketch see linked illustration "Box made from nXk-paper". %C A377133 The first few rows follow (n-2) * (k-2), so the initial terms are the same as in A075362. The first difference is at T(9,9) = 50 which is greater than 7 * 7. %H A377133 Felix Huber, <a href="/A377133/b377133.txt">Rows n = 3..142 of triangle, flattened</a> %H A377133 Felix Huber, <a href="/A377133/a377133.pdf">Box made from nXk-paper</a> %F A377133 T(n,k) = (n-2*x)*(k-2*x)*x with x = round((n+k-(sqrt(n^2+k^2-n*k)))/6). %e A377133 Triangle T(n,k) begins: %e A377133 n\k 3 4 5 6 7 8 9 10 11 12 13 ... %e A377133 3 1 %e A377133 4 2 4 %e A377133 5 3 6 9 %e A377133 6 4 8 12 16 %e A377133 7 5 10 15 20 25 %e A377133 8 6 12 18 24 30 36 %e A377133 9 7 14 21 28 35 42 50 %e A377133 10 8 16 24 32 40 48 60 72 %e A377133 11 9 18 27 36 45 56 70 84 98 %e A377133 12 10 20 30 40 50 64 80 96 112 128 %e A377133 13 11 22 33 44 55 72 90 108 126 144 162 %p A377133 A377113:=proc(n,k) %p A377133 local a,x,V; %p A377133 a:=0; %p A377133 for x to (k-1)/2 do %p A377133 V:=x*(n-2*x)*(k-2*x); %p A377133 if V>a then %p A377133 a:=V %p A377133 fi %p A377133 od; %p A377133 return a %p A377133 end proc; %p A377133 seq(seq(A377113(n,k),k=3..n),n=3..14); %Y A377133 Cf. A075362, A355880, A375580, A375785, A375785. %K A377133 nonn,tabl,easy %O A377133 3,2 %A A377133 _Felix Huber_, Oct 25 2024