This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A377134 #16 Mar 11 2025 04:39:45 %S A377134 336,1080,3078,6048,6552,19845,47616,239760,435708,599400,760320, %T A377134 873180,997920,1468800,1602300,2004480,4312440,4612608,4713984, %U A377134 10181808,10665984,11554816,12160512,24149664,31244850,46431744,56439504,64995840,116958492 %N A377134 Abundant numbers k such that k^2 + A033880(k)^2 is a perfect square. %C A377134 These abundant numbers along with their abundances form the legs of an integral Pythagorean triangle. %C A377134 Odd terms are very rare: 19845 is the only one up to 10^9. %C A377134 19845 is the only odd term up to 4*10^10. - _Amiram Eldar_, Mar 11 2025 %H A377134 Amiram Eldar, <a href="/A377134/b377134.txt">Table of n, a(n) for n = 1..56</a> %e A377134 336 is a term because its abundance is 320 and 320^2 + 336^2 = 464^2. %t A377134 l={}; Do[a=DivisorSigma[1,n]-2*n; If[a>0&&IntegerQ@Sqrt[n^2+a^2], AppendTo[l, n]], {n, 12, 2*10^8}]; l %o A377134 (PARI) for(n=12, 2*10^8, a=sigma(n)-2*n; a>0&&issquare(n^2+a^2)&&print1(n", ")) %o A377134 (Python) %o A377134 import sympy as sp %o A377134 for i in range(12, 200000000): %o A377134 a=sp.ntheory.factor_.divisor_sigma(i) - 2*i %o A377134 if a>0 and sp.ntheory.primetest.is_square(i*i+a*a): %o A377134 print(i, end=", ") %Y A377134 Cf. A005101, A033880, A000290. %K A377134 nonn %O A377134 1,1 %A A377134 _Waldemar Puszkarz_, Oct 17 2024