cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A377139 Numbers that have more cubefree divisors than any smaller number.

Original entry on oeis.org

1, 2, 4, 6, 12, 30, 36, 60, 180, 420, 900, 1260, 4620, 6300, 13860, 44100, 60060, 69300, 180180, 485100, 900900, 3063060, 6306300, 15315300, 58198140, 107207100, 290990700, 1179278100, 1338557220, 2036934900, 6692786100, 22406283900, 38818159380, 46849502700, 194090796900
Offset: 1

Views

Author

Amiram Eldar, Oct 17 2024

Keywords

Comments

First differ from A333931 and A353899 at n = 17.
Indices of records in A073184.
The corresponding record values are 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 27, 36, 48, 54, 72, 81, 96, 108, ... (see the link for more values).

Crossrefs

Subsequence of A004709 and A025487.

Programs

  • Mathematica
    f[p_, e_] := If[e == 1, 2, 3]; d[1] = 1; d[n_] := Times @@ f @@@ FactorInteger[n]; With[{v = Cases[Import["https://oeis.org/A025487/b025487.txt", "Table"], {, }][[;; , 2]]}, seq = {}; dm = 0; Do[If[(dk = d[v[[k]]]) > dm, dm = dk; AppendTo[seq, v[[k]]]], {k, 1, Length[v]}]; seq]

A377708 Numbers k that have a record number of divisors d such that gcd(d, k/d) is an exponentially odd number (A268335).

Original entry on oeis.org

1, 2, 4, 6, 12, 24, 36, 60, 120, 180, 360, 840, 1260, 2520, 6300, 7560, 12600, 27720, 69300, 83160, 138600, 360360, 900900, 1081080, 1801800, 5405400, 12612600, 18378360, 30630600, 91891800, 214414200, 349188840, 581981400, 1745944200, 4073869800, 8031343320, 12221609400
Offset: 1

Views

Author

Amiram Eldar, Nov 04 2024

Keywords

Comments

First differs from A365681 at n = 22.
First differs from A377140 at n = 95.
Indices of records in A365173.
The corresponding record values are 1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 32, 36, 48, 54, ... (see the link for more values).

Crossrefs

Subsequence of A025487.

Programs

  • Mathematica
    f[p_, e_] := Floor[(e + 5)/4] + Floor[(e + 6)/4]; d[1] = 1; d[n_] := Times @@ f @@@ FactorInteger[n]; v = Cases[Import["https://oeis.org/A025487/b025487.txt", "Table"], {, }][[;; , 2]]; seq = {}; dm = 0; Do[If[(dk = d[v[[k]]]) > dm, dm = dk; AppendTo[seq, v[[k]]]], {k, 1, Length[v]}]; seq
Showing 1-2 of 2 results.