This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A377142 #41 Nov 17 2024 07:38:02 %S A377142 2,4,5,16,64,4096,65536,262144 %N A377142 Numbers m such that phi(2*m-1)/2 = phi(2*m) - 1, where phi = A000010. %C A377142 Conjecture 1: each term has the form p^(q-1), where p, q both some primes. %C A377142 Conjecture 2: sequence is infinite. %C A377142 Presumably the sequence of numbers of the form (exponent of a(n)) + (smallest divisor of a(n)) is a supersequence of Mersenne exponents. %C A377142 If 2*m-1 is a Mersenne prime (A000668), then phi(2*m-1)/2 = m-1 = phi(2*m) - 1, so m is a term. - _Robert Israel_, Oct 20 2024 %F A377142 a(n) = (A376337(n) + 1)/2. %e A377142 2 is a term because phi(2*2-1)/2 = phi(3)/2 = 2/2 = 1 is equal to phi(2*2)-1 = phi(4)-1 = 2-1 = 1; %e A377142 5 is a term because phi(2*5-1)/2 = phi(9)/2 = 6/2 = 3 is equal to phi(2*5)-1 = phi(10)-1 = 4-1 = 3. %p A377142 filter:= m -> numtheory:-phi(2*m-1)/2 = numtheory:-phi(2*m)-1: %p A377142 select(filter, [$1..10^7]); # _Robert Israel_, Oct 20 2024 %t A377142 Select[Range[300000], EulerPhi[2*# - 1]/2 == EulerPhi[2*#] - 1 &] (* _Amiram Eldar_, Oct 30 2024 *) %o A377142 (Magma) [m: m in [2..2*10^6] | EulerPhi(2*m-1)/2 eq EulerPhi(2*m)-1]; %o A377142 (PARI) isok(m) = eulerphi(2*m-1)/2 == eulerphi(2*m) - 1; \\ _Michel Marcus_, Oct 30 2024 %Y A377142 Supersequence of A019279 and A061652. %Y A377142 Cf. A000010, A000043, A000668, A090748, A291901, A376337. %K A377142 nonn,more %O A377142 1,1 %A A377142 _Juri-Stepan Gerasimov_, Oct 19 2024